Systematic Modeling and Optimization for High-Efficiency Interdigitated Back-Contact Crystalline Silicon Solar Cells

被引:1
|
作者
Khokhar, Muhammad Quddamah [1 ]
Yousuf, Hasnain [2 ]
Alamgeer, Mengmeng [2 ]
Chu, Mengmeng [2 ]
Rahman, Rafi Ur [1 ]
Jony, Jaljalalul Abedin [2 ]
Hussain, Shahzada Qamar [3 ,4 ]
Pham, Duy Phong [1 ]
Yi, Junsin [5 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Suwon 16419, South Korea
[2] Sungkyunkwan Univ, Interdisciplinary Program Photovolta Syst Engn, Suwon 16419, South Korea
[3] RMIT Univ, STEM Sch Engn, 124 La Trobe St, Melbourne, Vic 3000, Australia
[4] COMSATS Univ Islamabad, Dept Phys, Lahore Campus, Lahore 54000, Pakistan
[5] Sungkyunkwan Univ, Coll Informat & Commun Engn, Gyeonggi Do 16419, South Korea
关键词
crystalline silicon; IBC solar cell; Quokka3; simulations; surface passivation; WORK FUNCTION; SIMULATION; LAYER;
D O I
10.1002/ente.202400831
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study utilizes Quokka3, an advanced solar cell simulation program, specifically tailored for interdigitated back-contact (IBC) crystalline silicon (c-Si) solar cells. Through meticulous Quokka3 simulations, the influence of several geometric and wafer characteristics of the solar cell backside on current-voltage (I-V) performance has been scientifically explored for IBC c-Si solar cells. The investigation encompasses parameters such as wafer thickness, bulk lifetime, resistivity, emitter and back surface field area fraction, and front- and rear-surface passivation. Optimal values for these parameters have been proposed to enhance the efficiency of IBC solar cells. These recommendations contain an emitter percentage of 70%, a wafer thickness ranging from 200 mu m, a wafer resistivity of 1 Omega cm, and a wafer bulk lifetime of at least 10 ms. Moreover, under conditions where the cell is not short-circuited, the potential for achieving higher cell efficiency, up to 26.64%, has been shown. This study uses Quokka3 to simulate interdigitated back-contact (IBC) c-Si solar cells, examining the impact of geometric and wafer characteristics. Optimal parameters include a 70% emitter percentage, 200 mu m thickness, 1 Omega cm resistivity, and 10 ms bulk lifetime. These optimizations achieve up to 26.64% efficiency, significantly enhancing performance, with open-circuit voltage (Voc) = 737.9 mV, short-circuit current (Jsc) = 42.06 mA cm-2, and Fill Factor (FF) = 85.85%.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Back-contact crystalline-silicon solar cells and modules
    Gee, JM
    Smith, DD
    Garrett, SE
    Bode, MD
    Jimeno, JC
    NCPV PHOTOVOLTAICS PROGRAM REVIEW: PROCEEDINGS OF THE 15TH CONFERENCE, 1999, 462 : 348 - 353
  • [12] A simulation study on the electrical structure of interdigitated back-contact silicon solar cells
    Min Gu Kang
    Hee-eun Song
    Soo Min Kim
    Donghwan Kim
    Journal of the Korean Physical Society, 2015, 66 : 1521 - 1526
  • [13] A simulation study on the electrical structure of interdigitated back-contact silicon solar cells
    Kang, Min Gu
    Song, Hee-eun
    Kim, Soo Min
    Kim, Donghwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2015, 66 (10) : 1521 - 1526
  • [14] Analysis of the current linearity at low illumination of high-efficiency back-junction back-contact silicon solar cells
    Granek, Filip
    Hermle, Martin
    Glunz, Stefan W.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2008, 2 (04): : 151 - 153
  • [15] Simulation of interdigitated back-contact silicon heterojunction solar cells with quantum transport model
    Kamioka, Takefumi
    Hayashi, Yutaka
    Nakamura, Kyotaro
    Ohshita, Yoshio
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (08)
  • [16] Screen-Printed Aluminum-Alloyed P+ Emitter on High-Efficiency N-Type Interdigitated Back-Contact Silicon Solar Cells
    Gong, Chun
    Van Kerschaver, Emmanuel
    Robbelein, Jo
    Janssens, Tom
    Posthuma, Niels
    Poortmans, Jef
    Mertens, Robert
    IEEE ELECTRON DEVICE LETTERS, 2010, 31 (06) : 576 - 578
  • [17] Performance optimization of back-contact perovskite solar cells with quasi-interdigitated electrodes
    Shalenov, Erik O.
    Dzhumagulova, Karlygash N.
    Ng, Annie
    Jumabekov, Askhat N.
    SOLAR ENERGY, 2020, 205 : 102 - 108
  • [18] TMAH texturisation and etching of interdigitated back-contact solar cells
    Papet, P.
    Nichiporuk, O.
    Fave, A.
    Kaminski, A.
    Bazer-Bachi, B.
    Lemiti, M.
    MATERIALS SCIENCE-POLAND, 2006, 24 (04):
  • [19] Potential of interdigitated back-contact silicon heterojunction solar cells for liquid phase crystallized silicon on glass with efficiency above 14%
    Trinh, Cham Thi
    Preissler, Natalie
    Sonntag, Paul
    Muske, Martin
    Jaeger, Klaus
    Trahms, Martina
    Schlatmann, Rutger
    Rech, Bernd
    Amkreutz, Daniel
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 174 : 187 - 195
  • [20] Simple power-loss analysis method for high-efficiency Interdigitated Back Contact (IBC) silicon solar cells
    Verlinden, Pierre J.
    Aleman, Monica
    Posthuma, Niels
    Fernandez, Jara
    Pawlak, Bartek
    Robbelein, Jo
    Debucquoy, Maarteen
    Van Wichelen, Koen
    Poortmans, Jef
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 106 : 37 - 41