Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum

被引:0
|
作者
Al Baba, Hind [1 ]
Al Taki, Bilal [1 ]
Hussein, Amru [1 ]
机构
[1] TU Kaiserlautern, RPTU Kaiserslautern Landau, Dept Math, Paul Ehrlich Str 31, D-67663 Kaiserslautern, Germany
关键词
Non-Newtonian fluids; Vacuum; Strong solutions; Blow-up criterion; RIESZ TRANSFORMS; LIE-GROUPS; SOLVABILITY; REGULARITY; UNIQUENESS; EXISTENCE; MODELS;
D O I
10.1007/s00021-024-00901-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss in this short note the local-in-time strong well-posedness of the compressible Navier-Stokes system for non-Newtonian fluids on the three dimensional torus. We show that the result established recently by Kalousek, M & aacute;cha, and Ne & ccaron;asova in https://doi.org/10.1007/s00208-021-02301-8 can be extended to the case where vanishing density is allowed initially. Our proof builds on the framework developed by Cho, Choe, and Kim in https://doi.org/10.1016/j.matpur.2003.11.004 for compressible Navier-Stokes equations in the case of Newtonian fluids. To adapt their method, special attention is given to the elliptic regularity of a challenging nonlinear elliptic system. We show particular results in this direction, however, the main result of this paper is proven in the general case when elliptic W2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W<^>{2,p}$$\end{document}-regularity is imposed as an assumption. Also, we give a finite time blow-up criterion.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Unique solvability for the density-dependent non-Newtonian compressible fluids with vacuum
    Chen, Mingtao
    Xu, Xiaojing
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (04) : 452 - 470
  • [22] LOCAL WELL-POSEDNESS OF THE FULL COMPRESSIBLE NAVIER-STOKES-MAXWELL SYSTEM WITH VACUUM
    Fan, Jishan
    Jia, Yueling
    KINETIC AND RELATED MODELS, 2018, 11 (01) : 97 - 106
  • [23] Local well-posedness to the three-dimensional barotropic compressible magnetohydrodynamic equations with vacuum
    Xu, Qingmei
    Zhong, Xin
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [24] Local well-posedness for an isentropic compressible Ginzburg-Landau-Navier-Stokes with vacuum
    Fan, Jishan
    Hu, Yuxi
    Nakamura, Gen
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (05) : 862 - 876
  • [25] Bipolar barotropic non-Newtonian compressible fluids
    Matusu-Necasová, S
    Medvidová-Lukácová, M
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05): : 923 - 934
  • [26] Bipolar isothermal non-Newtonian compressible fluids
    Matusu-Necasova, S
    Medvid'ova-Lukacova, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 225 (01) : 168 - 192
  • [27] NOTE ON THE PROBLEM OF COMPRESSIBLE NON-NEWTONIAN FLUIDS
    Caggio, M.
    Necasova, S.
    CONFERENCE TOPICAL PROBLEMS OF FLUID MECHANICS 2019: PROCEEDINGS, 2019, : 31 - 36
  • [28] Global Well-Posedness for Compressible Viscoelastic Fluids near Equilibrium
    Jianzhen Qian
    Zhifei Zhang
    Archive for Rational Mechanics and Analysis, 2010, 198 : 835 - 868
  • [29] Well-posedness of a model of nonhomogeneous compressible-incompressible fluids
    Bianchini, Roberta
    Natalini, Roberto
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2017, 14 (03) : 487 - 516
  • [30] Dispersive effect and global well-posedness of the compressible viscoelastic fluids
    Han, Bin
    Zi, Ruizhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9254 - 9296