Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization

被引:4
|
作者
Li, Juan [1 ,2 ,3 ]
Wang, Xiaoting [1 ,2 ,3 ]
Min, Shungeng [4 ]
Xia, Jingjing [1 ,2 ,3 ]
Li, Jinyao [1 ,2 ,3 ]
机构
[1] Xinjiang Univ, Sch Pharmaceut Sci, Coll Life Sci & Technol, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, Inst Mat Med, Coll Life Sci & Technol, Urumqi 830017, Peoples R China
[3] Xinjiang Univ, Coll Life Sci & Technol, Xinjiang Key Lab Biol Resources & Genet Engn, Urumqi 830017, Peoples R China
[4] China Agr Univ, Coll Sci, Beijing 100094, Peoples R China
关键词
Raman spectroscopy; Convolutional neural network; Feature visualization; Sub-types; Breast cancer; DIAGNOSIS;
D O I
10.1016/j.cmpb.2024.108361
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Problems: Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the current Raman prediction models fail to cover all the molecular sub-types of breast cancer, and lack the visualization of the model. Aims: Using Raman spectroscopy combined with convolutional neural network (CNN) to construct a prediction model for the existing known molecular sub-types of breast cancer, and selected critical peaks through visualization strategies, so as to achieve the purpose of mining specific biomarker information. Methods: Optimizing network parameters with the help of sparrow search algorithm (SSA) for the multiple parameters in the CNN to improve the prediction performance of the model. To avoid the contingency of the results, multiple sets of data were generated through Monte Carlo sampling and used to train the model, thereby improving the credibility of the results. Based on the accurate prediction of the model, the spectral regions that contributed to the classification were visualized using Gradient-weighted Class Activation Mapping (Grad-CAM), achieving the goal of visualizing characteristic peaks. Results: Compared with other algorithms, optimized CNN could obtain the highest accuracy and lowest standard error. And there was no significant difference between using full spectra and fingerprint regions (within 2 %), indicating that the fingerprint region provided the most contribution in classifying sub-types. Based on the classification results from the fingerprint region, the model performances about various sub-types were as follows: CNN (95.34 %+/- 2.18 %)>SVM(94.90 %+/- 1.88 %)>PLS-DA(94.52 %+/- 2.22 %)> KNN (80.00 %+/- 5.27 %). The critical features visualized by Grad-CAM could match well with IHC information, allowing for a more distinct differentiation of sub-types in their spatial positions. Conclusion: Raman spectroscopy combined with CNN could achieve accurate and rapid identification of breast cancer molecular sub-types. Proposed visualization strategy could be proved from biochemistry information and spatial location, demonstrated that the strategy might be used for the mining of biomarkers in future.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer
    Zeng, Qinggang
    Chen, Cheng
    Chen, Chen
    Song, Haitao
    Li, Min
    Yan, Junyi
    Lv, Xiaoyi
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2023, 286
  • [22] Diagnosis of hepatitis B based on Raman spectroscopy combined with a multiscale convolutional neural network
    Lu, Hongchun
    Tian, Shengwei
    Yu, Long
    Lv, Xiaoyi
    Chen, Sihuan
    VIBRATIONAL SPECTROSCOPY, 2020, 107
  • [23] Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics
    Wu, Xijun
    Xu, Baoran
    Ma, Renqi
    Niu, Yudong
    Gao, Shibo
    Liu, Hailong
    Zhang, Yungang
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 274
  • [24] Convolutional Neural Network for Classification of Histopathology Images for Breast Cancer Detection
    Narayanan, Barath Narayanan
    Krishnaraja, Vignesh
    Ali, Redha
    PROCEEDINGS OF THE 2019 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2019, : 291 - 295
  • [25] Convolutional Neural Network Based Breast Cancer Histopathology Image Classification
    Yamlome, Pascal
    Akwaboah, Akwasi Darkwa
    Marz, Aylin
    Deo, Makarand
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1144 - 1147
  • [26] Imbalanced Histopathological Breast Cancer Image Classification with Convolutional Neural Network
    Reza, Md Shamim
    Ma, Jinwen
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 619 - 624
  • [27] Breast Cancer Histopathological Image Classification Utilizing Convolutional Neural Network
    Tuan Dinh Truong
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 531 - 536
  • [28] Breast Cancer Classification in Histopathological Images using Convolutional Neural Network
    Al Rahhal, Mohamad Mahmoud
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 64 - 68
  • [29] Classification of breast cancer cytological specimen using convolutional neural network
    Zejmo, Michal
    Kowal, Marek
    Korbicz, Jozef
    Monczak, Roman
    13TH EUROPEAN WORKSHOP ON ADVANCED CONTROL AND DIAGNOSIS (ACD 2016), 2017, 783
  • [30] Breast cancer pathological image classification based on a convolutional neural network
    Yu L.
    Xia Y.
    Yan Y.
    Wang P.
    Cao W.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (04): : 567 - 573