In many thermal geotechnical applications, liquid nitrogen (LN2) utilization leads to damage and cracks in the host rock. This phenomenon and associated microcracking are a hot topic that must be thoroughly researched. A series of physical and mechanical experiments were conducted on Egyptian granodiorite samples to investigate the effects of liquid nitrogen cooling on the preheated rock. Before quenching in LN2, the granodiorite was gradually heated to 600 degrees C for two hours. Microscopical evolution was linked to macroscopic properties like porosity, mass, volume, density, P-wave velocity, uniaxial compressive strength, and elastic modulus. According to the experiment results, the thermal damage, crack density, porosity, and density reduction ratio increased gradually to 300 degrees C before severely degrading beyond this temperature. The uniaxial compressive strength declined marginally to 200 degrees C, then increased to 300 degrees C before monotonically decreasing as the temperature rose. On the other hand, at 200 degrees C, the elastic modulus and P-wave velocity started to decline significantly. Thus, 200 and 300 degrees C were noted in this study as two mutation temperatures in the evolution of granodiorite mechanical and physical properties, after which all parameters deteriorated. Moreover, LN2 cooling causes more remarkable physical and mechanical modifications at the same target temperature than air cooling. Through a deeper comprehension of how rocks behave in high-temperature conditions, this research seeks to avoid and limit future geological risks while promoting sustainability and understanding the processes underlying rock failure.