Advancing the Hydrate-Based CO2 Separation Process by Implementing Spectroscopic Analysis and Process Simulation

被引:0
|
作者
Go, Woojin [1 ]
Jung, Jongyeon [1 ]
Park, Myungchul [1 ,2 ]
Sohn, Young Hoon [1 ]
Lim, Junkyu [3 ]
Seo, Yongwon [3 ,4 ]
Seo, Yutaek [1 ]
机构
[1] Seoul Natl Univ, Res Inst Marine Syst Engn RIMSE, Coll Engn, Dept Naval Architecture & Ocean Engn, Seoul 08826, South Korea
[2] HD Korea Shipbuilding & Offshore Engn, Digital Technol Res Inst, Seongnam 13553, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Civil Urban Earth & Environm Engn, Ulsan 44919, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
关键词
GAS-MIXTURES; DISSOCIATION ENTHALPIES; CARBON-DIOXIDE; FLUE-GAS; HFC-134A; CAPTURE; SYSTEMS; EQUILIBRIUM;
D O I
10.1021/acs.energyfuels.4c03766
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The quest for environmentally sustainable solutions for CO2 recovery and purification has led to the development of innovative separation techniques, which are crucial for carbon capture, utilization, and storage (CCUS) applications. Moreover, refrigerant recovery techniques have been widely developed after the implementation of stringent global regulations on hydrofluorocarbon (HFC) emissions. This study explores the separation of R134a, a well-known HFC, from carbon dioxide (CO2), focusing on the feasibility of hydrate-based processes for the recovery of high-purity CO2. Phase equilibrium measurements, spectroscopic analysis, and process simulation studies were systematically performed to evaluate the operation conditions and energy requirements of the hydrate-based separation processes. Phase equilibrium measurements for R134a + CO2 mixtures at various concentrations were performed along with the structural analysis of mixed hydrates using low-temperature powder X-ray diffraction (PXRD). The experiments demonstrated the preferential occupation of R134a into hydrate cages, enriching CO2 in the vapor phase and achieving target purity levels of 99.0 mol % CO2. The PXRD patterns confirmed the formation of structure II hydrates with a lattice parameter of 17.2 & Aring; with inclusions of R134a in large cages, resulting in a higher exothermic heat of formation compared with that of structure I hydrates. Process simulations were performed to further extend these findings, highlighting the favorable operation conditions and the exothermic nature of hydrate formation, which suggested heat integration into other process units. This study represents a pioneering effort in modeling hydrate-based CO2 recovery processes, providing a significant contribution to the development of sustainable industrial practices and the advancement of CCUS technologies.
引用
收藏
页码:18918 / 18929
页数:12
相关论文
共 50 条
  • [41] Energy consumption analysis of hydrate-based technology in the carbon capture storage process
    Prah, Benedict
    Anokye, Michael
    Yun, Rin
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (12) : 6727 - 6737
  • [42] Purification of Industrial Effluent by Gas Hydrate-based (HyPurif) Process
    Sharma, Subhash Kumar
    Bhadauria, Anshu
    Kumar, T. Nanda
    Kumar, Rajnish
    JOURNAL OF CLEANER PRODUCTION, 2023, 420
  • [43] Continuous hydrate-based CO2 separation from H2+CO2 gas mixture using cyclopentane as co-guest
    Misawa, Takuma
    Ishikawa, Tomoaki
    Takeya, Satoshi
    Alavi, Saman
    Ohmura, Ryo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 121 : 228 - 234
  • [44] Influence of water volume on CO2 hydrate-based desalination of brine solution
    Nallakukkala, Sirisha
    Lal, Bhajan
    Shariff, Mohd Azmi
    Materials Today: Proceedings, 2022, 56 : 2172 - 2177
  • [45] Evaluation of 1,3-dioxolane in promoting CO2 hydrate kinetics and its significance in hydrate-based CO2 sequestration
    Yao, Yuanxin
    Yin, Zhenyuan
    Niu, Mengya
    Liu, Xuejian
    Zhang, Jibao
    Chen, Daoyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [46] Coupling Amino Acid with THF for the Synergistic Promotion of CO2 Hydrate Micro Kinetics: Implication for Hydrate-Based CO2 Sequestration
    Liu, Xuejian
    Li, Yan
    Chen, Guang-Jin
    Chen, Dao-Yi
    Sun, Bo
    Yin, Zhenyuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (15) : 6057 - 6069
  • [47] Effect of nanoparticles as a substitute for kinetic additives on the hydrate-based CO2 capture
    Cheng, Zucheng
    Xu, Huazheng
    Wang, Sijia
    Liu, Weiguo
    Li, Yanghui
    Jiang, Lanlan
    Chen, Cong
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2021, 424 (424)
  • [48] Capturing Carbon Dioxide through a Gas Hydrate-Based Process
    Partoon, Behzad
    Sabil, Khalik M.
    Keong, Lau Kok
    PRES15: PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2015, 45 : 1867 - 1872
  • [49] Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous
    Rehman, Adeel Ur
    Lal, Bhajan
    ENERGIES, 2022, 15 (21)
  • [50] Hydrothermal synthesis of calcium aluminium hydrate-based adsorbent for the removal of CO2
    Eisinas, A.
    Doneliene, J.
    Baltakys, K.
    Urbutis, A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 131 (01) : 537 - 544