Finch-Skea quintessence models in non-conservative theory of gravity

被引:0
|
作者
Shahzad, M. R. [1 ]
Ashraf, Asifa [2 ]
Qarni, M. Awais [1 ]
Mahmoud, Emad E. [3 ]
Ma, Wen-Xiu [2 ,4 ,5 ,6 ]
机构
[1] Bahauddin Zakariya Univ, Dept Math, Vehari Campus, Vehari 61100, Pakistan
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
[3] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] North West Univ, Sch Math & Stat Sci, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
来源
关键词
Quintessence field; Compact stars; Finch-Skea geometry; Stability; Rastall theory of gravity; COMPACT STARS MODEL; RASTALL GRAVITY; NONZERO DIVERGENCE; GENERAL-RELATIVITY; DATA RELEASE; ANISOTROPY; MASS;
D O I
10.1016/j.dark.2024.101646
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study is dedicated to presenting a new solution of the field equations in the Rastall theory with a quintessence field defined by the parameter !q q as -1 < !q q < - 13 by considering the isotropic matter content inside the sphere. The Finch-Skea ansatz (FS) FS ) is used in a static and spherically symmetric geometry to obtain the feasible relativistic solution. The results obtained in the physical evaluation are analyzed analytically and graphically. In the appropriate limit of the Rastall coupling parameter, one can regain the original results in the General Relativity. This complete analysis considers five different compact stars: HerX - 1 with mass 0.88M ae . 88 M ae and radius 7.7 km, VelaX - 12 with mass 1.77M ae . 77 M ae and radius 9.99 km, SAXJ1808 1808 - 3658(SSI) SSI ) with mass 1.435M ae . 435 M ae and radius 7.07 km, 4U1608 U 1608 - 52 with mass 1.74M ae . 74 M ae and radius 9.30 km, 4U1538 U 1538 - 52 with mass 0.87M ae . 87 M ae and radius 7.86 km and PSRJ1416 1416 - 2230 with mass 1.97M ae . 97 M ae and radius 10.30 km. The physical validity of the obtained solution is verified by computing the necessary physical parameters like energy density and pressure, quintessence density, energy conditions, sound speed via the Herrera cracking concept, hydrostatic equilibrium of forces, mass function, compactness, Buchdahl limit, and surface redshift and analyze their behavior graphically. To investigate the demeanor of these parameters more closely, we computed the numerical values and manifested them in tabular form. We conclude that our presented mathematical model of compact stars in the Finch-Skea geometry with quintessence field fulfills all the requirements for a physically viable solution.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Anisotropic stellar modeling via MIT Bag model EoS admitting Finch-Skea spacetime in f(Q) gravity
    Ditta, Allah
    Asia, Munaza
    Errehymy, Abdelghani
    Mustafa, G.
    Maurya, S. K.
    Mahmood, Asif
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (11):
  • [22] Gravastar configuration in non-conservative rastall gravity
    Majeed, K.
    Abbas, G.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2022, 6 (04):
  • [23] Study on physical properties and maximum mass limit of Finch-Skea anisotropic model under Karmarkar condition in f(Q)-gravity
    Mustafa, G.
    Ditta, Allah
    Mumtaz, Saadia
    Maurya, S. K.
    Sofuoglu, Deger
    CHINESE JOURNAL OF PHYSICS, 2024, 88 : 938 - 954
  • [24] Theory of linear non-conservative systems
    Zevin, A.A.
    Journal of Applied Mathematics and Mechanics, 1988, 52 (03) : 300 - 304
  • [25] Reconstruction of inflationary scenarios in non-conservative unimodular gravity
    Piccirilli, Maria Pia
    Leon, Gabriel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (03) : 4024 - 4036
  • [26] NOETHERS THEORY IN CLASSICAL NON-CONSERVATIVE MECHANICS
    DJUKIC, S
    VUJANOVIC, BD
    ACTA MECHANICA, 1975, 23 (1-2) : 17 - 27
  • [27] ENTROPY PRODUCTION IN A NON-CONSERVATIVE GRAVITATIONAL THEORY
    WOLF, C
    ASTRONOMISCHE NACHRICHTEN, 1988, 309 (03) : 177 - 180
  • [28] The theory of gyroscopic systems with non-conservative forces
    Koshlyakov, VN
    Makarov, VL
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2001, 65 (04): : 681 - 687
  • [29] A theory of the destabilization paradox in non-conservative systems
    O. N. Kirillov
    Acta Mechanica, 2005, 174 : 145 - 166
  • [30] A theory of the destabilization paradox in non-conservative systems
    Kirillov, ON
    ACTA MECHANICA, 2005, 174 (3-4) : 145 - 166