Innovations in Mosquito Identification: Integrating Deep Learning with Citizen Science

被引:0
|
作者
Mathoho, Mulaedza [1 ]
van der Haar, Dustin [1 ]
Vadapalli, Hima [1 ]
机构
[1] Univ Johannesburg, Acad Comp Sci & Software Engn, Cnr Univ Rd & Kingsway Ave,Auckland Pk, ZA-2092 Johannesburg, Gauteng, South Africa
关键词
Deep learning; Mosquito identification; Citizen science;
D O I
10.1007/978-3-031-67285-9_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In response to the escalating global threat of mosquito-borne diseases, this research introduces an innovative application of deep learning techniques to address the critical need for precise mosquito identification. Utilising a diverse dataset generously contributed by citizen scientists, this study aims to utilize existing advanced computer vision models capable of accurately detecting and classifying mosquitoes. The model underwent extensive training and evaluation, demonstrating remarkable accuracy and generalization capabilities. Evaluation metrics were employed to assess the model's performance comprehensively, including precision, recall, F1 score, accuracy, specificity and ROC AUC. The results showcase the model's effectiveness in accurately identifying and classifying mosquitoes across various taxonomic categories and environmental conditions. By leveraging cutting-edge AI technology and engaging citizen scientists, this initiative represents a significant step forward in revolutionizing mosquito surveillance and combating the spread of mosquito-borne diseases.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
  • [21] Deep learning increases the availability of organism photographs taken by citizens in citizen science programs
    Yukari Suzuki-Ohno
    Thomas Westfechtel
    Jun Yokoyama
    Kazunori Ohno
    Tohru Nakashizuka
    Masakado Kawata
    Takayuki Okatani
    Scientific Reports, 12
  • [22] Deep learning and citizen science enable automated plant trait predictions from photographs
    Christopher Schiller
    Sebastian Schmidtlein
    Coline Boonman
    Alvaro Moreno-Martínez
    Teja Kattenborn
    Scientific Reports, 11
  • [23] Identifying animal species in camera trap images using deep learning and citizen science
    Willi, Marco
    Pitman, Ross T.
    Cardoso, Anabelle W.
    Locke, Christina
    Swanson, Alexandra
    Boyer, Amy
    Veldthuis, Marten
    Fortson, Lucy
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (01): : 80 - 91
  • [24] A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images
    Torney, Colin J.
    Lloyd-Jones, David J.
    Chevallier, Mark
    Moyer, David C.
    Maliti, Honori T.
    Mwita, Machoke
    Kohi, Edward M.
    Hopcraft, Grant C.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (06): : 779 - 787
  • [25] Learning and the transformative potential of citizen science
    Bela, Gyorgyi
    Peltola, Taru
    Young, Juliette C.
    Balazs, Balint
    Arpin, Isabelle
    Pataki, Gyorgy
    Hauck, Jennifer
    Kelemen, Eszter
    Kopperoinen, Leena
    Van Herzele, Ann
    Keune, Hans
    Hecker, Susanne
    Suskevics, Monika
    Roy, Helen E.
    Itkonen, Pekka
    Kulvik, Mart
    Laszlo, Miklos
    Basnou, Corina
    Pino, Joan
    Bonn, Aletta
    CONSERVATION BIOLOGY, 2016, 30 (05) : 990 - 999
  • [26] Citizen Science: Toward Transformative Learning
    Ruiz-Mallen, Isabel
    Riboli-Sasco, Livio
    Ribrault, Claire
    Heras, Maria
    Laguna, Daniel
    Perie, Leila
    SCIENCE COMMUNICATION, 2016, 38 (04) : 523 - 534
  • [27] Machine learning, misinformation, and citizen science
    Yee, Adrian K.
    EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE, 2023, 13 (04)
  • [28] Machine learning, misinformation, and citizen science
    Adrian K. Yee
    European Journal for Philosophy of Science, 2023, 13
  • [29] Citizen Science: A Gateway for Innovation in Disease-Carrying Mosquito Management?
    Bartumeus, Frederic
    Oltra, Aitana
    Palmer, John R. B.
    TRENDS IN PARASITOLOGY, 2018, 34 (09) : 727 - 729
  • [30] CITIZEN SCIENCE FOR MOSQUITO MONITORING AND MALARIA VECTOR CONTROL IN RUHUHA, RWANDA
    Murindahabi, Marilyn Milumbu
    Koenraadt, Constantianus J.
    Takken, Willem
    Mutesa, Leon
    Hakizimana, Emmanuel
    Poortvliet, P. Marijn
    van Vliet, Arnold J. H.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 327 - 327