Evaluation and prediction of slag-based geopolymer's compressive strength using design of experiment (DOE) approach and artificial neural network (ANN) algorithms

被引:2
|
作者
Al-Sughayer, Rami [1 ,2 ]
Alkhateb, Hunain [2 ]
Yasarer, Hakan [2 ]
Najjar, Yacoub [2 ]
Al-Ostaz, Ahmed [1 ,2 ]
机构
[1] Univ Mississippi, Ctr Graphene Res & Innovat, University, MS 38677 USA
[2] Univ Mississippi, Dept Civil Engn, University, MS 38677 USA
关键词
Alkali-activated materials; Geopolymer; Artificial neural network (ANN); Slag; Rheology; Compressive strength; Mechanical properties; ALKALI-ACTIVATED SLAG; FLY-ASH; ENGINEERING PROPERTIES; MECHANICAL-PROPERTIES; CEMENT; HYDRATION; PASTES; MICROSTRUCTURE; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2024.137322
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Even though the demand for utilizing geopolymers is growing, the need for current standard guidelines to regulate compliance to address the complexity of the mix design could be one of the major hurdles of utilizing geopolymers vastly in construction. There is no straightforward standard that addresses the complexity of the mix design of geopolymers. Thus, this work addresses main factors affecting the compressive strength of slag based geopolymers and provide a tool for predicting it. This article includes experimental work to evaluate the properties of slag-based geopolymer binders and the development of a model using Artificial Neural Network (ANN) algorithms for predicting the performance of these slag-based geopolymer binders. In this paper, we have utilized and developed ANN models for optimizing slag-based geopolymer mixes based on precursor materials' physiochemical properties and activation solutions constituents that can enhance performance compressive strength prediction in construction applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Concrete Compressive Strength Prediction Using Rebound Method with Artificial Neural Network
    Liu, Jianming
    Li, Huijian
    He, Changjun
    MANUFACTURING SCIENCE AND MATERIALS ENGINEERING, PTS 1 AND 2, 2012, 443-444 : 34 - 39
  • [22] Optimizing compressive strength prediction of pervious concrete using artificial neural network
    Wijekoon, Sathushka Heshan Bandara
    Janarth, Asoharasa
    Dharmar, Joseph
    Vinojan, Perinparasa
    Sathiparan, Navaratnarajah
    Subramaniam, Daniel Niruban
    ENGINEERING RESEARCH EXPRESS, 2025, 7 (01):
  • [23] Prediction of soil unconfined compressive strength using Artificial Neural Network model
    Hoang-Anh Le
    Thuy-Anh Nguyen
    Duc-Dam Nguyen
    Prakash, Indra
    VIETNAM JOURNAL OF EARTH SCIENCES, 2020, 42 (03): : 255 - 264
  • [24] Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
    Bu, Liangtao
    Du, Guoqiang
    Hou, Qi
    MATERIALS, 2021, 14 (14)
  • [25] Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches
    Dong Van Dao
    Son Hoang Trinh
    Hai-Bang Ly
    Binh Thai Pham
    APPLIED SCIENCES-BASEL, 2019, 9 (06):
  • [26] Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network
    Abbas Majdi
    Mohammad Rezaei
    Neural Computing and Applications, 2013, 23 : 381 - 389
  • [27] Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network
    Majdi, Abbas
    Rezaei, Mohammad
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (02): : 381 - 389
  • [28] Compressive strength prediction of ternary blended geopolymer concrete using artificial neural networks and support vector regression
    K. K. Yaswanth
    V. Sathish Kumar
    J. Revathy
    G. Murali
    C. Pavithra
    Innovative Infrastructure Solutions, 2024, 9
  • [29] Compressive strength prediction of ternary blended geopolymer concrete using artificial neural networks and support vector regression
    Yaswanth, K. K.
    Kumar, V. Sathish
    Revathy, J.
    Murali, G.
    Pavithra, C.
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (02)
  • [30] Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
    Bilim, Cahit
    Atis, Cengiz D.
    Tanyildizi, Harun
    Karahan, Okan
    ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (05) : 334 - 340