New type of solutions for the modified Korteweg-de Vries equation

被引:0
|
作者
Liu, Xing-yu [1 ,2 ]
Lu, Bin-he [3 ]
Zhang, Da-jun [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Qianweichang Coll, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified Korteweg-de Vries equation; Trigonometric function; Soliton solution; Bilinear form; BACKLUND-TRANSFORMATIONS;
D O I
10.1016/j.aml.2024.109288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this letter we report a new type of multi-soliton solutions for the modified Korteweg-de Vries (mKdV) equation. These solutions contain a functions of the trigonometric solitons and classical solitons simultaneously. A new bilinear form of the mKdV equation is introduced to derive these solutions. The obtained solutions display as solitons living on a periodic background, which are analyzed and illustrated.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [22] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [23] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236
  • [24] Accelerating solutions of the Korteweg-de Vries equation
    Winkler, Maricarmen A.
    Asenjo, Felipe A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [25] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32
  • [26] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747
  • [27] Smooth positon solutions of the focusing modified Korteweg-de Vries equation
    Xing, Qiuxia
    Wu, Zhiwei
    Mihalache, Dumitru
    He, Jingsong
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2299 - 2310
  • [28] Breathers and localized solutions of complex modified Korteweg-de Vries equation
    Liu, Yue-Feng
    Guo, Rui
    Li, Hua
    MODERN PHYSICS LETTERS B, 2015, 29 (23):
  • [29] Large time behavior of solutions for the modified Korteweg-de Vries equation
    Hayashi, N
    Naumkin, PI
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (08) : 395 - 418
  • [30] EXACT-SOLUTIONS OF THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION
    MOHAMMAD, AA
    CAN, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11): : 3223 - 3233