Knowledge graph-based representation and recommendation for surrogate modeling method

被引:0
|
作者
Wan, Silai [1 ]
Wang, Guoxin [1 ]
Ming, Zhenjun [1 ]
Yan, Yan
Nellippallil, Anand Balu [2 ]
Allen, Janet K. [3 ]
Mistree, Farrokh [4 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Florida Inst Technol, Dept Mech & Civil Engn, OEC 210,150 W Univ Blvd, Melbourne, FL 32901 USA
[3] Univ Oklahoma, Syst Realizat Lab, Room 219,202 W Boyd St, Norman, OK 73019 USA
[4] Univ Oklahoma, Syst Realizat Lab, Felgar Hall,Room 306,865 Asp Ave, Norman, OK 73019 USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Surrogate model; Surrogate modeling method; Knowledge graph; Complex system design; OPTIMIZATION; SELECTION; SYSTEM;
D O I
10.1016/j.aei.2024.102706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surrogate models have been widely used in engineering design for approximating a simulation system with high computational cost. Complex system design typically is a multi-stage and multi-discipline design problem, which requires a large number of surrogate models. The choice of surrogate modeling method (SMM) is critical as it directly impacts the performance of both the surrogate models and the designed systems. With the growing variety of SMMs, designers face challenges in selecting the appropriate methods for their specific applications. To address this, we propose a representation and recommendation framework for surrogate modeling methods based on knowledge graph. Firstly, we develop an ontology to formally represent core concepts involved in the recommendation for surrogate modeling methods, including surrogate modeling method, surrogate model, and data sets,etc. Secondly, we extract 460 samples from 46 benchmark functions using Latin hypercube sampling to construct a knowledge graph with 8,343 nodes and 16,100 relationships, which involves 7,820 surrogate models generated from 17 surrogate modeling methods. Finally, we propose a knowledge graph-based recommendation method for surrogate modeling method named KGRSMM to facilitate the selection of an appropriate surrogate modeling method. We test the efficacy of KGRSMM using examples of theoretical problems and engineering problems of hot rod rolling respectively. It is shown in the results that KGRSMM is capable of recommending surrogates with appropriate accuracy, robustness, and time to satisfy designers' preferences.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Learning Graph-Based Geographical Latent Representation for Point-of-Interest Recommendation
    Chang, Buru
    Jang, Gwanghoon
    Kim, Seoyoon
    Kang, Jaewoo
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 135 - 144
  • [42] Graph-Based Hybrid Recommendation Using Random Walk and Topic Modeling
    Zheng, Hai-Tao
    Yan, Yang-Hui
    Zhou, Ying-Min
    WEB TECHNOLOGIES AND APPLICATIONS (APWEB 2015), 2015, 9313 : 573 - 585
  • [43] A knowledge graph-based inspection items recommendation method for port state control inspection of LNG carriers
    Zhang, Xiyu
    Liu, Chengyong
    Xu, Yi
    Ye, Beiyan
    Gan, Langxiong
    Shu, Yaqing
    OCEAN ENGINEERING, 2024, 313
  • [44] Graph-based Alignment and Uniformity for Recommendation
    Yang, Liangwei
    Liu, Zhiwei
    Wang, Chen
    Yang, Mingdai
    Liu, Xiaolong
    Ma, Jing
    Yu, Philip S.
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4395 - 4399
  • [45] Content-based and knowledge graph-based paper recommendation: Exploring user preferences with the knowledge graphs for scientific paper recommendation
    Tang, Hao
    Liu, Baisong
    Qian, Jiangbo
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (13):
  • [46] Improving graph-based recommendation with unraveled graph learning
    Chang, Chih-Chieh
    Tzeng, Diing-Ruey
    Lu, Chia-Hsun
    Chang, Ming-Yi
    Shen, Chih-Ya
    DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 38 (04) : 2440 - 2465
  • [47] Graph-based Recommendation using Graph Neural Networks
    Dossena, Marco
    Irwin, Christopher
    Portinale, Luigi
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1769 - 1774
  • [48] A Knowledge Graph-Based Many-Objective Model for Explainable Social Recommendation
    Cai, Xingjuan
    Guo, Wanwan
    Zhao, Mengkai
    Cui, Zhihua
    Chen, Jinjun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (06) : 3021 - 3030
  • [49] CONSTRUCTING AN ONTOLOGY-BASED AND GRAPH-BASED KNOWLEDGE REPRESENTATION OF ENGLISH QURAN
    Noordin, Mohamad Fauzan
    Sembok, Tengku Mohd Tengku
    Othman, Roslina
    Gusmita, Ria Hari
    JURNAL TEKNOLOGI, 2016, 78 (8-2): : 35 - 41
  • [50] Predicting Learners Need for Recommendation Using Dynamic Graph-Based Knowledge Tracing
    Chanaa, Abdessamad
    El Faddouli, Nour-Eddine
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 : 49 - 53