Enhancing next destination prediction: A novel long short-term memory neural network approach using real-world airline data

被引:0
|
作者
Salihoglu, Salih [1 ]
Koksal, Gulser [2 ]
Abar, Orhan [3 ]
机构
[1] Middle East Tech Univ, Dept Ind Engn, Ankara, Turkiye
[2] TED Univ, Dept Ind Engn, Ankara, Turkiye
[3] Osmaniye Korkut Ata Univ, Dept Comp Engn, Osmaniye, Turkiye
关键词
Next destination prediction; Long short-term memory; Deep learning;
D O I
10.1016/j.engappai.2024.109266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the modern transportation industry, accurate prediction of travelers' next destinations brings multiple benefits to companies, such as customer satisfaction and targeted marketing. This study focuses on developing a precise model that captures the sequential patterns and dependencies in travel data, enabling accurate predictions of individual travelers' future destinations. To achieve this, a novel model architecture with a sliding window approach based on Long Short-Term Memory (LSTM) is proposed for destination prediction in the transportation industry. The experimental results highlight satisfactory performance and high scores achieved by the proposed model across different data sizes and performance metrics. Additionally, a comparative analysis highlights the superior ability of the LSTM model to capture complex temporal dependencies in travel data. This research contributes to advancing destination prediction methods, empowering companies to deliver personalized recommendations and optimize customer experiences in the dynamic travel landscape.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Prediction and Analysis of Transient Turbine Tip Clearance Using Long Short-Term Memory Neural Network
    Yang, Yue
    Mao, Junkui
    Chen, Pingting
    Guo, Naxian
    Wang, Feilong
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (10):
  • [42] Deep Learning for Price Movement Prediction Using Convolutional Neural Network and Long Short-Term Memory
    Yang, Can
    Zhai, Junjie
    Tao, Guihua
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [43] Dynamical prediction of two meteorological factors using the deep neural network and the long short-term memory (ΙΙ)
    Shin, Ki-Hong
    Jung, Jae-Won
    Chang, Ki-Ho
    Kim, Kyungsik
    Jung, Woon-Seon
    Lee, Dong-In
    You, Cheol-Hwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2022, 80 (12) : 1081 - 1097
  • [44] Prediction of Cancer Symptom Trajectory Using Longitudinal Electronic Health Record Data and Long Short-Term Memory Neural Network
    Chae, Sena
    Street, W. Nick
    Ramaraju, Naveenkumar
    Gilbertson-White, Stephanie
    JCO CLINICAL CANCER INFORMATICS, 2024, 8
  • [45] Prediction of air pollutant concentrations based on the long short-term memory neural network
    Wu, Zechuan
    Tian, Yuping
    Li, Mingze
    Wang, Bin
    Quan, Ying
    Liu, Jianyang
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 465
  • [46] A model for vessel trajectory prediction based on long short-term memory neural network
    Tang H.
    Yin Y.
    Shen H.
    Journal of Marine Engineering and Technology, 2022, 21 (03): : 136 - 145
  • [47] Air Quality Prediction Based on Neural Network Model of Long Short-term Memory
    Du, Zhehua
    Lin, Xin
    2020 6TH INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND ENVIRONMENT ENGINEERING, 2020, 508
  • [48] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [49] Work in Progress Level Prediction with Long Short-Term Memory Recurrent Neural Network
    Gallina, Viola
    Lingitz, Lukas
    Breitschopf, Johannes
    Zudor, Elisabeth
    Sihn, Wilfried
    10TH CIRP SPONSORED CONFERENCE ON DIGITAL ENTERPRISE TECHNOLOGIES (DET 2020) - DIGITAL TECHNOLOGIES AS ENABLERS OF INDUSTRIAL COMPETITIVENESS AND SUSTAINABILITY, 2021, 54 : 136 - 141
  • [50] Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory
    Zhu, Tingting
    Guo, Yiren
    Li, Zhenye
    Wang, Cong
    ENERGIES, 2021, 14 (24)