A consistent specification test for functional linear quantile regression models

被引:0
|
作者
Xia, Lili [1 ]
Zhang, Zhongzhan [1 ]
Shi, Gongming [2 ]
机构
[1] Beijing Univ Technol, Beijing 100124, Peoples R China
[2] Capital Univ Econ & Business, Beijing 100070, Peoples R China
基金
中国国家自然科学基金;
关键词
Functional data; Model specification; Nonparametric test; Quadratic form; Quantile regression; OF-FIT TESTS; INFERENCE;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is focused on the specification test of functional linear quantile regression models. A nonparametric test statistic is proposed based on the orthogonality of residual and its conditional expectation. It is proved with mild assumptions that the proposed statistic follows asymptotically the standard normal distribution under the null hypothesis, but tends to infinity under alternative hypothesis. The asymptotic power of the test is also presented for some local alternative hypotheses. The test is easy to implement, and is shown by simulations powerful even for small sample sizes. A real data example with the Capital Bikeshare data is presented for illustration.
引用
收藏
页码:649 / 667
页数:19
相关论文
共 50 条
  • [21] Efficient Quantile Estimation for Functional-Coefficient Partially Linear Regression Models
    Zhangong ZHOU 1 Rong JIANG 2 Weimin QIAN 31 Department of Statistics
    Chinese Annals of Mathematics(Series B), 2011, 32 (05) : 729 - 740
  • [22] Efficient quantile estimation for functional-coefficient partially linear regression models
    Zhangong Zhou
    Rong Jiang
    Weimin Qian
    Chinese Annals of Mathematics, Series B, 2011, 32 : 729 - 740
  • [23] Efficient quantile estimation for functional-coefficient partially linear regression models
    Zhou, Zhangong
    Jiang, Rong
    Qian, Weimin
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (05) : 729 - 740
  • [24] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    Metrika, 2014, 77 : 317 - 332
  • [25] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358
  • [26] Functional quantile regression: local linear modelisation
    Kaid, Zoulikha
    Laksaci, Ali
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 155 - 160
  • [27] Functional partially linear quantile regression model
    Lu, Ying
    Du, Jiang
    Sun, Zhimeng
    METRIKA, 2014, 77 (02) : 317 - 332
  • [28] Optimal subsampling for linear quantile regression models
    Fan, Yan
    Liu, Yukun
    Zhu, Lixing
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1039 - 1057
  • [29] Bayesian quantile regression for hierarchical linear models
    Yu, Yang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (17) : 3451 - 3467
  • [30] Testing in linear composite quantile regression models
    Rong Jiang
    Wei-Min Qian
    Jing-Ru Li
    Computational Statistics, 2014, 29 : 1381 - 1402