Max Weight Independent Set in Sparse Graphs with No Long Claws

被引:0
|
作者
Abrishami, Tara [1 ]
Chudnovsky, Maria [2 ]
Pilipczuk, Marcin [3 ]
Rzazewski, Pawel [3 ,4 ]
机构
[1] Univ Hamburg, Dept Math, Hamburg, Germany
[2] Princeton Univ, Princeton, NJ 08544 USA
[3] Univ Warsaw, Fac Math Informat & Mech, Inst Informat, Warsaw, Poland
[4] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
基金
欧洲研究理事会; 美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Max Weight Independent Set; subdivided claw; hereditary classes; P-T-FREE; MAXIMUM WEIGHT; STABLE SETS; POLYNOMIAL ALGORITHM; TIME ALGORITHM; SUBCLASSES; (P-6; HARD;
D O I
10.4230/LIPIcs.STACS.2024.4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set ( MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzazewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n(O(Delta 2)), where n is the number of vertices of the instance and Delta is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Fast Algorithms for max independent set
    Bourgeois, Nicolas
    Escoffier, Bruno
    Paschos, Vangelis T.
    van Rooij, Johan M. M.
    ALGORITHMICA, 2012, 62 (1-2) : 382 - 415
  • [32] INDEPENDENT SETS IN RANDOM SPARSE GRAPHS
    GAZMURI, PG
    NETWORKS, 1984, 14 (03) : 367 - 377
  • [33] Fast Algorithms for max independent set
    Nicolas Bourgeois
    Bruno Escoffier
    Vangelis T. Paschos
    Johan M. M. van Rooij
    Algorithmica, 2012, 62 : 382 - 415
  • [34] VERTEX DECOMPOSITIONS OF SPARSE GRAPHS INTO AN INDEPENDENT VERTEX SET AND A SUBGRAPH OF MAXIMUM DEGREE AT MOST 1
    Borodin, O. V.
    Kostochka, A. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (05) : 796 - 801
  • [35] Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most 1
    Borodin O.V.
    Kostochka A.V.
    Siberian Mathematical Journal, 2011, 52 (5) : 796 - 801
  • [36] Monte Carlo algorithms are very effective in finding the largest independent set in sparse random graphs
    Angelini, Maria Chiara
    Ricci-Tersenghi, Federico
    PHYSICAL REVIEW E, 2019, 100 (01)
  • [37] Sum-of-Squares Lower Bounds for Independent Set on Ultra-Sparse Random Graphs
    Kothari, Pravesh K.
    Potechin, Aaron
    Xu, Jeff
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1923 - 1934
  • [38] An exact algorithm for MAX-CUT in sparse graphs
    Della Croce, F.
    Kaminski, M. J.
    Paschos, V. Th.
    OPERATIONS RESEARCH LETTERS, 2007, 35 (03) : 403 - 408
  • [39] SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE MAXIMUM-WEIGHT INDEPENDENT SET PROBLEM ON PERMUTATION GRAPHS
    YU, MS
    TSENG, LY
    CHANG, SJ
    INFORMATION PROCESSING LETTERS, 1993, 46 (01) : 7 - 11
  • [40] A new simple algorithm for the maximum-weight independent set problem on circle graphs
    Valiente, G
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2003, 2906 : 129 - 137