A Framework for the Estimation of Uncertainties and Spectral Error Correlation in Sentinel-2 Level-2A Data Products

被引:0
|
作者
Gorrono, Javier [1 ]
Guanter, Luis [1 ,2 ]
Graf, Lukas Valentin [3 ,4 ]
Gascon, Ferran [5 ]
机构
[1] Univ Politecn Valencia, Res Inst Water & Environm Engn, Valencia 46022, Spain
[2] Environm Def Fund, NL-1017 LN Amsterdam, Netherlands
[3] Swiss Fed Inst Technol, Inst Agr Sci, Crop Sci Grp, CH-8092 Zurich, Switzerland
[4] Agroscope, Div Agroecol & Environm, Earth Observat Agroecosyst Team, CH-8046 Zurich, Switzerland
[5] European Space Agcy, I-00044 Frascati, Italy
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Uncertainty; Reflectivity; Land surface; Atmospheric modeling; Correlation; Ocean temperature; Mathematical models; Copernicus; Level-2A; spectral error correlation; surface reflectance; uncertainty; RADIATIVE-TRANSFER CALCULATIONS; LIBRADTRAN SOFTWARE PACKAGE; ATMOSPHERIC CORRECTION; SOLSPEC SPECTROMETER; REFLECTANCE; IRRADIANCE; RETRIEVAL; ATLAS; NM;
D O I
10.1109/TGRS.2024.3435021
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Copernicus Sentinel-2 (S2) satellite mission acquires high spatial resolution optical imagery over land and coastal areas. Delivering uncertainty estimates and spectral error correlation alongside S2 data products facilitates the constrain of retrieval algorithms, propagates further downstream the retrieval uncertainty, and, finally, makes informed decisions to end-users. This study presents a framework to produce uncertainty estimates and spectral error correlation associated with the S2 L2A data products (i.e., surface reflectance). This framework has been implemented in a prototype code available at https://doi.org/10.5281/zenodo.11971517. The uncertainty considers both the Level-1 (L1) uncertainty estimates for the top-of-atmosphere (TOA) reflectance factor and the atmospheric correction. The L2A error distribution cannot be systematically described as a normal distribution; the transformation can be nonlinear and without an explicit mathematical model. Thus, a multivariate Monte Carlo model (MCM) rather than the law of propagation of uncertainty (LPU) is selected for uncertainty propagation. We show results for surface reflectance uncertainty over the Amazon forest and Libya4 desert site. It illustrates the large uncertainty and spectral error correlation variations depending on the scene. The comparison of a multivariate MCM against an LPU propagation methodology indicates the limitations of the latter for scenes dominated by the atmospheric path. Its implementation as an operational per-pixel processing and dissemination of both the uncertainty and spectral error correlation becomes challenging. Therefore, this methodology is not expected to run at an operational level but serves as the basis to define a strategy for an operational one.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data
    Chen, Yuyun
    Li, Longwei
    Lu, Dengsheng
    Li, Dengqiu
    REMOTE SENSING, 2019, 11 (01)
  • [22] INTER-SENSOR REGRESSION ANALYSIS FOR OPERATIONAL SENTINEL-2 AND SENTINEL-3 DATA PRODUCTS
    Haut, Juan M.
    Fernandez-Beltran, Ruben
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Pla, Filiberto
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2603 - 2606
  • [23] Combining both spectral and textural indices for alleviating saturation problem in forest LAI estimation using Sentinel-2 data
    Wang, Quan
    Putri, Niken Andika
    Gan, Yi
    Song, Guangman
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 10511 - 10531
  • [24] Harmonized Landsat/Sentinel-2 Products for Land Monitoring
    Masek, Jeffrey
    Ju, Junchang
    Roger, Jean-Claude
    Skakun, Sergii
    Claverie, Martin
    Dungan, Jennifer
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8163 - 8165
  • [25] Denoising and classification of urban ICESat-2 photon data fused with Sentinel-2 spectral images
    Duan, Jingjing
    Wang, Hongtao
    Wang, Cheng
    Nie, Sheng
    Yang, Xuebo
    Xi, Xiaohuan
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (02) : 4346 - 4367
  • [26] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [27] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [28] Natural color representation of Sentinel-2 data
    Sovdat, Blaz
    Kadunc, Miha
    Batic, Matej
    Milcinski, Grega
    REMOTE SENSING OF ENVIRONMENT, 2019, 225 : 392 - 402
  • [29] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [30] Satellite-derived bathymetry from correlation of Sentinel-2 spectral bands to derive wave kinematics: Qualification of Sentinel-2 S2Shores estimates with hydrographic standards
    Almar, Rafael
    Bergsma, Erwin W. J.
    Thoumyre, Gregoire
    Solange, Lemai-Chenevier
    Loyer, Sophie
    Artigues, Stephanie
    Salles, Gregoire
    Garlan, Thierry
    Lifermann, Anne
    COASTAL ENGINEERING, 2024, 189