Synthesis guidance of PbS colloidal quantum dots with neural network model for short wave infrared photodetector

被引:0
|
作者
Xu, Genghao [1 ]
Chen, Hongjie [1 ]
Lin, Haosen [1 ]
Liu, Xuyang [1 ]
Li, Bobo [1 ]
Chen, Wei [2 ]
Wu, Dan [1 ]
Ma, Lei [1 ]
机构
[1] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China
[2] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
关键词
PbS colloidal quantum dots; Neural networks; The exciton peak; Peak/valley ratio; PHOTOVOLTAICS; NANOCRYSTALS; MONODISPERSE;
D O I
10.1016/j.optmat.2024.116069
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
PbS colloidal quantum dots (CQDs) have important applications in short-wave infrared (SWIR) detection due to its wide tunable bandgap, low thermoelectric noise, and solution processing capability. Due to the exciton peak of QDs determines the response band of the detector, while QDs with good monodispersed often exhibit better optical performance in photodetectors. The detection performance of PbS CQD-based SWIR photodetectors is closely related to the synthetic properties of QDs in the active layer. In addition, the emergence of machine learning in recent years has accelerated the exploration of QDs synthesis processes. Here, a framework is developed by neural network model which can learn from existing experimental data, through proposed experimental parameters for try, and ultimately point to regions of synthetic parameter space, thereby rapidly and accurately predicting the exciton peak and peak/valley ratio of synthesized CQDs. In terms of model performance, the NN model achieved a correlation coefficient of 0.93 for exciton peak prediction, which is very close to 1. For peak/valley ratio prediction, the correlation coefficient reached 0.75. In prediction of the latest synthesized CQD, the prediction error of exciton peak is only 3.89 %, and the prediction error of peak/valley ratio is 7.24 %. Furthermore, this batch of well synthesized monodisperse CQDs with a peak/valley ratio of 3.105 were used to prepare SWIR photoconductive devices, which demonstrates an excellent device performance, with the responsivity achieving 2.53 A/W, the detectivity reaching up to 2.08 x 1012 12 Jones and the noise current of only 7.81 x 10-13 A/Hz1/2. 1/2 . This work provides an effective method for preparing PbS CQD of various waveband with uniform particle size, which is expected to reduce costs for high-performance SWIR photodetectors.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Synthesis of near infrared PbS quantum dots by pyrolysis of organometallic sulfur complex
    Peng Yong
    Luo Xi-Xian
    Fu Yao
    Xing Ming-Ming
    ACTA PHYSICA SINICA, 2013, 62 (20)
  • [32] Fast-Response Photodetector Based on Hybrid Bi2Te3/PbS Colloidal Quantum Dots
    Yu, Lijing
    Tian, Pin
    Tang, Libin
    Hao, Qun
    Teng, Kar Seng
    Zhong, Hefu
    Yue, Biao
    Wang, Haipeng
    Yan, Shunying
    NANOMATERIALS, 2022, 12 (18)
  • [33] One-Pot Colloidal Synthesis Enables Highly Tunable InSb Short-Wave Infrared Quantum Dots Exhibiting Carrier Multiplication
    Mir, Wasim J.
    Sheikh, Tariq
    Nematulloev, Saidkhodzha
    Maity, Partha
    Yorov, Khursand E.
    Emwas, Abdul-Hamid
    Hedhili, Mohamed Nejib
    Khan, Mudeha Shafat
    Abulikemu, Mutalifu
    Mohammed, Omar F.
    Bakr, Osman M.
    SMALL, 2024, 20 (19)
  • [34] Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots
    Tang, Yicheng
    Fang, Hehai
    Long, Mingsheng
    Chen, Gang
    Zheng, Zhe
    Zhang, Jin
    Zhou, Wenjia
    Ning, Zhijun
    Zhu, Zhihong
    Feng, Ying
    Qin, Shigiao
    Chen, Xiaoshuang
    Lu, Wei
    Hu, Weida
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (04)
  • [35] High performance short wave infrared photodetector using p-i-p quantum dots (InAs/GaAs) validated with theoretically simulated model
    Deviprasad, Vidya P.
    Ghadi, Hemant
    Das, Debabrata
    Panda, Debiprasad
    Rawool, Harshal
    Chavan, Vinayak
    Tongbram, Binita
    Patwari, Jayita
    Pal, Samir Kumar
    Chakrabarti, Subhananda
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 804 : 18 - 26
  • [36] Short-wave Infrared Colloidal Quantum Dot Photodetectors on Silicon
    Hu, Chen
    Gassenq, Alban
    Justo, Yolanda
    Yakunin, Sergii
    Heiss, Wolfgang
    Hens, Zeger
    Roelkens, Gunther
    QUANTUM SENSING AND NANOPHOTONIC DEVICES X, 2013, 8631
  • [37] Mid-Infrared Intraband Photodetector via High Carrier Mobility HgSe Colloidal Quantum Dots
    Chen, Menglu
    Hao, Qun
    Luo, Yuning
    Tang, Xin
    ACS NANO, 2022, 16 (07) : 11027 - 11035
  • [38] Formation of Colloidal In(As,P) Quantum Dots Active in the Short-Wave Infrared, Promoting Growth through Temperature Ramps
    Leemans, Jari
    Respekta, Dobromil
    Bai, Jing
    Braeuer, Simone
    Vanhaecke, Frank
    Hens, Zeger
    ACS NANO, 2023, 17 (20) : 20002 - 20012
  • [39] Optimization of Charge Carrier Extraction in Colloidal Quantum Dots Short-Wave Infrared Photodiodes through Optical Engineering
    Georgitzikis, Epimitheas
    Malinowski, Pawel E.
    Maes, Jorick
    Hadipour, Afshin
    Hens, Zeger
    Heremans, Paul
    Cheyns, David
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (42)
  • [40] InSb/InP Core-Shell Colloidal Quantum Dots for Sensitive and Fast Short-Wave Infrared Photodetectors
    Peng, Lucheng
    Wang, Yongjie
    Ren, Yurong
    Wang, Zhuoran
    Cao, Pengfei
    Konstantatos, Gerasimos
    ACS NANO, 2024, 18 (06) : 5113 - 5121