Melatonin modulates TLR4/MyD88/NF-κB signaling pathway to ameliorate cognitive impairment in sleep-deprived rats

被引:1
|
作者
Yin, Chao [1 ,2 ,3 ]
Zhang, Meiya [1 ,2 ,3 ]
Cheng, Li [1 ]
Ding, Li [1 ,2 ,3 ]
Lv, Qing [1 ]
Huang, Zixuan [1 ]
Zhou, Jiaqi [1 ]
Chen, Jianmei [1 ]
Wang, Ping [2 ,3 ]
Zhang, Shunbo [1 ]
You, Qiuyun [1 ,2 ,3 ]
机构
[1] Hubei Univ Chinese Med, Sch Pharm, Wuhan, Peoples R China
[2] Hubei Univ Chinese Med, Engn Res Ctr TCM Protect Technol & New Prod Dev El, Minist Educ, Wuhan, Peoples R China
[3] Hubei Univ Chinese Med, Hubei Shizhen Lab, Wuhan, Peoples R China
关键词
melatonin; sleep deprivation; cognitive impairmen; TLR4/MYD88/NF-kappa B signaling pathway; neuroinflammation; MICROBIOTA; DISEASE;
D O I
10.3389/fphar.2024.1430599
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Sleep deprivation (SD) is commonplace in today's fast-paced society. SD is a severe public health problem globally since it may cause cognitive decline and even neurodegenerative disorders like Alzheimer's disease. Melatonin (MT) is a natural chemical secreted by the pineal gland with neuroprotective effects. The purpose of this study was to investigate the protective effect and mechanism of MT on chronic sleep deprivation-induced cognitive impairment. A 3-week modified multi-platform method was used to create the SD rat model. The Morris water maze test (MWM), Tissue staining (including Hematoxylin and Eosin (H & E) staining, Nissl staining, and immunofluorescence), Western blot, Enzyme-linked immunosorbent assay (ELISA), and Quantitative real-time polymerase chain reaction (qPCR) were used to investigate the protective effect and mechanism of MT in ameliorating cognitive impairment in SD rats. The results showed that MT (50 and 100 mg/kg) significantly improved cognitive function in rats, as evidenced by a shortening of escape latency and increased time of crossing the platform and time spent in the quadrant. Additionally, MT therapy alleviated hippocampus neurodegeneration and neuronal loss while lowering levels of pathogenic factors (LPS) and inflammatory indicators (IL-1 beta, IL-6, TNF-alpha, iNOS, and COX2). Furthermore, MT treatment reversed the high expression of A beta 42 and Iba1 as well as the low expression of ZO-1 and occludin, and inhibited the SD-induced TLR4/MyD88/NF-kappa B signaling pathway. In summary, MT ameliorated spatial recognition and learning memory dysfunction in SD rats by reducing neuroinflammation and increasing neuroprotection while inhibiting the TLR4/MyD88/NF-kappa B signaling pathway. Our study supports the use of MT as an alternate treatment for SD with cognitive impairment.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Rapamycin improves sevoflurane-induced cognitive dysfunction in aged rats by mediating autophagy through the TLR4/MyD88/NF-κB signaling pathway
    Li, Yan
    Liu, Lidan
    Tian, Yue
    Zhang, Jin
    MOLECULAR MEDICINE REPORTS, 2019, 20 (04) : 3085 - 3094
  • [22] Bioactive glass in the treatment of ulcerative colitis to regulate the TLR4/MyD88/NF-κB pathway
    Wang, Wenhao
    Jia, Shengyuan
    Miao, Guohou
    Sun, Zhenmin
    Yu, Feng
    Gao, Zhixing
    Li, Yuli
    BIOMATERIALS ADVANCES, 2023, 152
  • [23] Exercise Improves High Fat-Induced Cognitive Impairment by Inhibiting Hippocampal Neuroinflammation via the Suppression of TLR4/MyD88/NF-κB Signaling Pathway
    Li, H.
    Yu, Q.
    Ma, Xinyang
    Liu, Qi
    Zhai, Y.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 84 : 111 - 117
  • [24] Wedelolactone Mitigates Alcoholic Steatohepatitis via Modulating the TLR4/MyD88/NF-κB Pathway
    Jiang, Tao
    Hu, Bingde
    Li, Yongxia
    Yu, Shuihong
    MEDIATORS OF INFLAMMATION, 2024, 2024
  • [25] Nicorandil inhibits TLR4/MyD88/NF-κB/NLRP3 signaling pathway to reduce pyroptosis in rats with myocardial infarction
    Chen, Feng
    Chen, Zhi-Qing
    Zhong, Gui-Ling
    Zhu, Ji-Jin
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2021, 246 (17) : 1938 - 1947
  • [26] Gelsolin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats by Modulating TLR4/Myd88/NF-κB Signaling Pathway
    Fu, Hai-Yan
    Hu, Zhan-Sheng
    Dong, Xiao-Ting
    Zhou, Rong-Bin
    Du, Hong-Yang
    INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2022, 18 (03) : 511 - 521
  • [27] Ginkgolide-A Alleviates Adjuvant-induced Rheumatoid Arthritis in Rats by Targeting TLR4/Myd88/NF-Κb Signaling Pathway
    Yin, Qian
    Sun, Yanling
    Zhao, Haoyu
    LATIN AMERICAN JOURNAL OF PHARMACY, 2023, 42 (06): : 1291 - 1296
  • [28] Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway
    Li, Huajing
    Zhang, Hongmei
    Zhao, Hua
    ENVIRONMENTAL TOXICOLOGY, 2023, 38 (02) : 253 - 265
  • [29] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Wu, Liucheng
    Du, Lili
    Ju, Qianqian
    Chen, Zhiheng
    Ma, Yu
    Bai, Ting
    Ji, Guiqing
    Wu, Yu
    Liu, Zhaoguo
    Shao, Yixiang
    Peng, Xiaoqing
    INFLAMMATION, 2021, 44 (02) : 633 - 644
  • [30] Silencing TLR4/MyD88/NF-κB Signaling Pathway Alleviated Inflammation of Corneal Epithelial Cells Infected by ISE
    Liucheng Wu
    Lili Du
    Qianqian Ju
    Zhiheng Chen
    Yu Ma
    Ting Bai
    Guiqing Ji
    Yu Wu
    Zhaoguo Liu
    Yixiang Shao
    Xiaoqing Peng
    Inflammation, 2021, 44 : 633 - 644