AI Game Agents Based on Evolutionary Search and (Deep) Reinforcement Learning: A Practical Analysis with Flappy Bird

被引:1
|
作者
Thurler, Leonardo [1 ]
Montes, Jose [1 ]
Veloso, Rodrigo [1 ]
Paes, Aline [1 ]
Clua, Esteban [1 ]
机构
[1] Univ Fed Fluminense, Niteroi, RJ, Brazil
来源
关键词
Artificial intelligence; Reinforcement learning; Deep reinforcement learning; Genetic algorithm; Q-Learning; NEAT; PPO; Ml-agents; Flappy Bird; AI game agents; Game; Unity; Pygame; NEURAL-NETWORKS;
D O I
10.1007/978-3-030-89394-1_15
中图分类号
学科分类号
摘要
Game agents are efficiently implemented through different AI techniques, such as neural network, reinforcement learning, and evolutionary search. Although there are many works for each approach, we present a critical analysis and comparison between them, suggesting a common benchmark and parameter configurations. The evolutionary strategy implements the NeuroEvolution of Augmenting Topologies algorithm, while the reinforcement learning agent leverages Q-Learning and Proximal Policy Optimization. We formulate and empirically compare this set of solutions using the Flappy Bird game as a test scenario. We also compare different representations of state and reward functions for each method. All methods were able to generate agents that can play the game, where the NEAT algorithm had the best results, reaching the goal of never losing.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 50 条
  • [21] Dynamic Spectrum Access in Cognitive Radio Networks Using Deep Reinforcement Learning and Evolutionary Game
    Yang, Peitong
    Li, Lixin
    Yin, Haying
    Zhang, Huisheng
    Liang, Wei
    Chen, Wei
    Han, Zhu
    2018 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2018, : 405 - 409
  • [22] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2022, 2022-July
  • [23] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [24] Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning
    Xu, Can
    Zhang, Yin
    Wang, Weigang
    Dong, Ligang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [25] Influence Maximization for Signed Networks Based on Evolutionary Deep Reinforcement Learning
    Ma L.-J.
    Hong H.-P.
    Lin Q.-Z.
    Li J.-Q.
    Gong M.-G.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (11): : 5084 - 5112
  • [26] Imitation Game: A Model-based and Imitation Learning Deep Reinforcement Learning Hybrid
    Veith, Eric Msp
    Logemann, Torben
    Berezin, Aleksandr
    Wellssow, Arlena
    Balduin, Stephan
    2024 12TH WORKSHOP ON MODELING AND SIMULATION OF CYBER-PHYSICAL ENERGY SYSTEMS, MSCPES, 2024,
  • [27] Toward competitive multi-agents in Polo game based on reinforcement learning
    Movahedi, Zahra
    Bastanfard, Azam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 26773 - 26793
  • [28] Toward competitive multi-agents in Polo game based on reinforcement learning
    Zahra Movahedi
    Azam Bastanfard
    Multimedia Tools and Applications, 2021, 80 : 26773 - 26793
  • [29] Cooperative Search Method for Multiple UAVs Based on Deep Reinforcement Learning
    Gao, Mingsheng
    Zhang, Xiaoxuan
    SENSORS, 2022, 22 (18)
  • [30] Vehicular cloud networking: evolutionary game with reinforcement learning-based access approach
    Mekki, Tesnim
    Jabri, Issam
    Rachedi, Abderrezak
    Ben Jemaa, Maher
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2019, 13 (01) : 45 - 58