Few-shot classification with Fork Attention Adapter

被引:0
|
作者
Sun, Jieqi [1 ]
Li, Jian [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Sch Math & Data Sci, Xian 710021, Peoples R China
关键词
Few-shot Classification; Meta-Learning; Attention mechanism; Dense feature similarity;
D O I
10.1016/j.patcog.2024.110805
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning aims to transfer the knowledge learned from seen categories to unseen categories with a few references. It is also an essential challenge to bridge the gap between humans and deep learning models in real- world applications. Despite extensive previous efforts to tackle this problem by finding an appropriate similarity function, we emphasize that most existing methods have merely considered a single low-resolution representation pair utilized in similarity calculations between support and query samples. Such representational limitations could induce the instability of category predictions. To better achieve metric learning stabilities, we present a novel method dubbed Fork Attention Adapter (FA-adapter), which can seamlessly establish the dense feature similarity with the newly generated nuanced features. The utility of the proposed method is more performant and efficient via the two-stage training phase. Extensive experiments demonstrate consistent and substantial accuracy gains on the fine-grained CUB, Aircraft, non-fine-grained mini-ImageNet, and tiered-ImageNet benchmarks. By comprehensively studying and visualizing the learned knowledge from different source domains, we further present an extension version termed FA-adapter++ ++ to boost the performance in fine-grained scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Few-shot image classification algorithm based on attention mechanism and weight fusion
    Meng X.
    Wang X.
    Yin S.
    Li H.
    Journal of Engineering and Applied Science, 2023, 70 (01):
  • [32] Multi-scale Few-Shot Classification Model Based on Attention Mechanism
    Xu, Yi
    Zhu, Qisheng
    Pan, ZhengYue
    Liu, Yin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 476 - 487
  • [33] A few-shot image classification method based on feature cross-attention
    Fan, Shenghu
    International Journal of Data Science, 2023, 8 (04) : 361 - 374
  • [34] Mixed Loss Graph Attention Network for Few-Shot SAR Target Classification
    Yang, Minjia
    Bai, Xueru
    Wang, Li
    Zhou, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] LEARNING SEMANTICS-GUIDED VISUAL ATTENTION FOR FEW-SHOT IMAGE CLASSIFICATION
    Chu, Wen-Hsuan
    Wang, Yu-Chiang Frank
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2979 - 2983
  • [36] Dynamic Prototype Selection by Fusing Attention Mechanism for Few-Shot Relation Classification
    Wu, Linfang
    Zhang, Hua-Ping
    Yang, Yaofei
    Liu, Xin
    Gao, Kai
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT I, 2020, 12033 : 431 - 441
  • [37] Multi-attention fusion and weighted class representation for few-shot classification
    赵文仓
    QIN Wenqian
    LI Ming
    HighTechnologyLetters, 2022, 28 (03) : 295 - 306
  • [38] A lightweight dense relation network with attention for hyperspectral image few-shot classification
    Shi, Meilin
    Ren, Jiansi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [39] HYBRID ATTENTION-BASED PROTOTYPICAL NETWORKS FOR FEW-SHOT SOUND CLASSIFICATION
    Wang, You
    Anderson, David, V
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 651 - 655
  • [40] Spatial Attention Network for Few-Shot Learning
    He, Xianhao
    Qiao, Peng
    Dou, Yong
    Niu, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 567 - 578