High Performance Pseudo-Pt@Pt Core-Shell Electrocatalyst for Oxygen Reduction Reaction: A Density Functional Theory Study

被引:0
|
作者
Zhang, Yan-Ping [1 ,2 ]
Wei, He-He [1 ,2 ]
Wang, Zhi-Qiang [1 ,2 ]
Hu, P. [1 ,2 ,3 ]
Gong, Xue-Qing [1 ,2 ,4 ]
机构
[1] East China Univ Sci & Technol, Ctr Computat Chem, State Key Lab Green Chem Engn & Ind Catalysis, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Res Inst Ind Catalysis, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 37期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTRIC-FIELD; ALLOY; CATALYSTS; PLATINUM; TRENDS; TRANSITION; NANOCAGES; SURFACES;
D O I
10.1021/acs.jpcc.4c04875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of cost-effective Pt-based oxygen reduction reaction (ORR) electrocatalysts is crucial for the application of proton exchange membrane fuel cells (PEMFCs). In this work, by using density functional theory calculations, we show that the Pt-M@Pt core-shell alloy (M = Co, Ni, Cu, with Pt-M alloy as the pseudo-Pt core and Pt as the shell) gives significantly higher ORR activity than pure Pt and common Pt-M alloys. Through structural and electronic analyses, we suggest that this is mainly caused by the asymmetric strain modulation effect of the pseudo-Pt core on the Pt shell and the interfacial charge transfer, which leads to a significant downward shift of the d-band center (epsilon d) and alters the bonding mode between the metal d orbitals and the adsorbed oxygen (O) p orbitals from equal contributions of the five d orbitals to dominant contributions of d(xy) and d(x2-y2) orbitals, thereby weakening the adsorption strength of O. Notably, the PtCo@Pt(111) surface with a suitable compressive strain and appropriate interfacial charge transfer exhibits the highest ORR activity and the corresponding overpotential is 0.38 V lower than Pt(111).
引用
收藏
页码:15476 / 15486
页数:11
相关论文
共 50 条
  • [41] High-Index Core-Shell Ni-Pt Nanoparticles as Oxygen Reduction Electrocatalysts
    Leteba, Gerard M.
    Mitchell, David R. G.
    Levecque, Pieter B. J.
    Macheli, Lebohang
    van Steen, Eric
    Lang, Candace, I
    ACS APPLIED NANO MATERIALS, 2020, 3 (06) : 5718 - 5731
  • [42] Effects of oxygen coverage, catalyst size, and core composition on Pt-alloy core-shell nanoparticles for oxygen reduction reaction
    Praserthdam, Supareak
    Balbuena, Perla B.
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (13) : 5168 - 5177
  • [43] The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
    Tripkovic, Vladimir
    Skulason, Egill
    Siahrostami, Samira
    Norskov, Jens K.
    Rossmeisl, Jan
    ELECTROCHIMICA ACTA, 2010, 55 (27) : 7975 - 7981
  • [44] Stacked and Core-Shell Pt:Ni/WC Nanorod Array Electrocatalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells
    Yurtseyer, Fatma M.
    Yurukcu, Mesut
    Begum, Mahbuba
    Watanabe, Fumiya
    Karabacak, Tansel
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6115 - 6122
  • [45] Highly Active Carbon Supported Core-Shell PtNi@Pt Nanoparticles for Oxygen Reduction Reaction
    Li, Wenzhen
    Haldar, Pradeep
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (05) : B47 - B49
  • [46] Rationalization of Au Concentration and Distribution in AuNi@Pt Core-Shell Nanoparticles for Oxygen Reduction Reaction
    An, Wei
    Liu, Ping
    ACS CATALYSIS, 2015, 5 (11): : 6328 - 6336
  • [47] Pt overgrowth on carbon supported PdFe seeds in the preparation of core-shell electrocatalysts for the oxygen reduction reaction
    Wang, Wei
    Wang, Rongfang
    Ji, Shan
    Feng, Hanqing
    Wang, Hui
    Lei, Ziqiang
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3498 - 3503
  • [48] Pd@Pt core-shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction
    Zhao, Ruopeng
    Liu, Yi
    Liu, Chang
    Xu, Guangrui
    Chen, Yu
    Tang, Yawen
    Lu, Tianhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (48) : 20855 - 20860
  • [49] Enhanced electrocatalytic activity and stability of PdCo@Pt core-shell nanoparticles for oxygen reduction reaction
    Park, Ah-Reum
    Lee, Young-Woo
    Kwak, Da-Hee
    Roh, Bumwook
    Hwang, Inchul
    Park, Kyung-Won
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (11) : 1219 - 1223
  • [50] Pd@Pt core-shell concave decahedra: A class of catalysts for enhancing the oxygen reduction reaction
    Vara, Madeline
    Wang, Xue
    Luo, Ming
    Huang, Hongwen
    Ruditskiy, Aleksey
    Park, Jinho
    Bao, Shixiong
    Liu, Jingyue
    Howe, Jane
    Chi, Miaofang
    Xie, Zhaoxiong
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251