Catalyst design and reactor engineering for electrochemical CO2 reduction to formate and formic acid

被引:3
|
作者
Nankya, Rosalynn [1 ]
Elgazzar, Ahmad [1 ]
Zhu, Peng [1 ]
Chen, Feng-Yang [1 ]
Wang, Haotian [1 ,2 ,3 ]
机构
[1] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
关键词
CO2; electroreduction; Formate; Formic acid; Electrocatalyst; Reactor design; ABUNDANT GRAIN-BOUNDARIES; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE; EFFICIENT REDUCTION; HIGHLY EFFICIENT; IN-SITU; ELECTROCATALYTIC REDUCTION; SELECTIVE CONVERSION; METAL-ELECTRODES; LIQUID FUELS;
D O I
10.1016/j.mattod.2024.05.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The potential for directly converting CO2 2 to valuable liquid fuels utilizing green and renewable electricity has sparked significant interest in CO2 2 electroreduction (CO2RR). 2 RR). In recent years, CO2 2 conversion to formate/formic acid (HCOO-/HCOOH)- /HCOOH) has witnessed fast growth due to its economic and technological viability combined with the development of highly selective catalysts and practical electrolyzes. In this review, we summarize and discuss recent advances in HCOOH generation from CO2 2 reduction in terms of (1) the rationale behind choosing HCOOH as a CO2 2 electroreduction product, (2) mechanistic pathways to form HCOOH, (3) novel electrocatalyst developments for enhanced HCOOH production, and (4) electrolyzer designs that tackle practical challenges in scalability, reaction rate, and product impurities. Finally, a brief outlook on future opportunities in this field is offered to accelerate the industrialization of CO2RR 2 RR to HCOOH.
引用
收藏
页码:94 / 109
页数:16
相关论文
共 50 条
  • [21] Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst
    Zha, Bingjie
    Li, Chunxiang
    Li, Jinjin
    JOURNAL OF CATALYSIS, 2020, 382 : 69 - 76
  • [22] An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces
    Jiang, Tian-Wen
    Qin, Xianxian
    Ye, Ke
    Zhang, Wei-Yi
    Li, Hong
    Liu, Wenhui
    Huo, Shengjuan
    Zhang, Xia-Guang
    Jiang, Kun
    Cai, Wen-Bin
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 334
  • [23] Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability
    Fu, Yishu
    Li, Yanan
    Zhang, Xia
    Liu, Yuyu
    Zhou, Xiaodong
    Qiao, Jinli
    CHINESE JOURNAL OF CATALYSIS, 2016, 37 (07) : 1081 - 1088
  • [24] High Pressure Electrochemical Reduction of CO2 to Formic Acid/Formate: A Comparison between Bipolar Membranes and Cation Exchange Membranes
    Ramdin, Mahinder
    Morrison, Andrew R. T.
    de Groen, Mariette
    van Haperen, Rien
    de Kler, Robert
    van den Broeke, Leo J. P.
    Trusler, J. P. Martin
    de Jong, Wiebren
    Vlugt, Thijs J. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (05) : 1834 - 1847
  • [25] Progress and perspectives for electrochemical CO2 reduction to formate
    Zou, Jinshuo
    Liang, Gemeng
    Lee, Chong-Yong
    Wallace, Gordon G.
    MATERIALS TODAY ENERGY, 2023, 38
  • [26] Producing formic acid at low pH values by electrochemical CO2 reduction
    Osskopp, Marvin
    Lowe, Armin
    Lobo, Carlos M. S.
    Baranyai, Sebastian
    Khoza, Thulile
    Auinger, Michael
    Klemm, Elias
    JOURNAL OF CO2 UTILIZATION, 2022, 56
  • [27] Efficient bi-functional catalyst towards coupling glycerol oxidation and CO2 reduction to achieve formic acid and formate production
    Zhou, Shuanglong
    Dai, Yu
    Song, Qiang
    Lu, Lina
    Yu, Xiao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 957
  • [28] Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols
    Zhou, Lingxi
    Lv, Ruitao
    JOURNAL OF ENERGY CHEMISTRY, 2022, 70 : 310 - 331
  • [29] Bismuth Nano-Flowers as a Highly Selective Catalyst for Electrochemical Reduction of CO2 to Formate
    Qiu, Yue
    Du, Jun
    Dai, Chaoneng
    Dong, Wen
    Tao, Changyuan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (10) : H594 - H600
  • [30] Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols
    Lingxi Zhou
    Ruitao Lv
    Journal of Energy Chemistry, 2022, 70 (07) : 310 - 331