Polydiolcitrate-MoS2 Composite for 3D Printing Radio-Opaque, Bioresorbable Vascular Scaffolds

被引:2
|
作者
Szydlowska, Beata M. [1 ,2 ]
Ding, Yonghui [2 ,3 ]
Moore, Connor [2 ]
Cai, Zizhen [1 ]
Torres-Castanedo, Carlos G. [1 ]
Collins, Caralyn P. [2 ,4 ]
Jones, Evan [2 ,4 ]
Hersam, Mark C. [1 ,2 ,6 ,7 ]
Sun, Cheng [2 ,4 ]
Ameer, Guillermo A. [2 ,3 ,5 ,8 ,9 ,10 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Adv Regenerat Engn CARE, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[5] Northwestern Univ, Feinberg Sch Med, Dept Surg, Chicago, IL 60611 USA
[6] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[8] Northwestern Univ, Simpson Querrey Inst, Evanston, IL 60208 USA
[9] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
[10] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
关键词
stent; bioresorbable; citric acid; MoS2; 2D material; X-ray contrast; radio-opacity; biocomposite; TOMOGRAPHY; DEGRADATION; STENT; MOS2; CYTOTOXICITY; MULTICENTER; MECHANISMS; GRAPHENE;
D O I
10.1021/acsami.4c07364
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (mu CLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.
引用
收藏
页码:45422 / 45432
页数:11
相关论文
共 50 条
  • [21] 3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds
    Melo, Priscila
    Montalbano, Giorgia
    Fiorilli, Sonia
    Vitale-Brovarone, Chiara
    MATERIALS, 2021, 14 (21)
  • [22] One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications
    Kotlarz, Marcin
    Jordan, Rainer
    Wegener, Erik
    Dobrzynski, Piotr
    Neunzehn, Joerg
    Lederer, Albena
    Wolf-Brandstetter, Cornelia
    Pamula, Elzbieta
    Scharnweber, Dieter
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2018, 20 (02) : 35 - 45
  • [23] 3D Printing of Diatomite Incorporated Composite Scaffolds for Skin Repair of Deep Burn Wounds
    Ma, Jingge
    Wu, Jinfu
    Zhang, Hongjian
    Du, Lin
    Zhuang, Hui
    Zhang, Zhaowenbin
    Ma, Bing
    Chang, Jiang
    Wu, Chengtie
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2022, 8 (03) : 163 - 175
  • [24] A promising pullulan/PLA composite: Influence of pullulan in the scaffolds morphology constructed by 3D printing
    Neto, Thalita Silva
    Maia, Lana S.
    Zanata, Leonardo
    Conceicao, Monique O. T.
    Medeiros, Simone F.
    Faria, Maria Ismenia S. D.
    Rosa, Derval S.
    Mulinari, Daniella R.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2025, 142 (03)
  • [25] Parameter optimization for accurate and repeatable strut width in the 3D printing of composite bone scaffolds
    Bappy, Mahathir Mohammad
    Van Epps, Emma
    Priddy, Lauren B.
    Tian, Wenmeng
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 131 : 1631 - 1641
  • [26] Direct 3D printing of decellularized matrix embedded composite polycaprolactone scaffolds for cartilage regeneration
    Gruber, Stacey M. S.
    Murab, Sumit
    Ghosh, Paulomi
    Whitlock, Patrick W.
    Lin, Chia-Ying J.
    BIOMATERIALS ADVANCES, 2022, 140
  • [27] 3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications
    Parupelli, Santosh Kumar
    Saudi, Sheikh
    Bhattarai, Narayan
    Desai, Salil
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (06) : 539 - 551
  • [28] Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds
    Balciunas, Evaldas
    Lukosevicius, Laurynas
    Mackeviciute, Dovile
    Rekstyte, Sima
    Rutkunas, Vygandas
    Paipulas, Domas
    Stankeviciute, Karolina
    Baltriukiene, Daiva
    Bukelskiene, Virginija
    Piskarskas, Algis P.
    Malinauskas, Mangirdas
    FRONTIERS IN ULTRAFAST OPTICS: BIOMEDICAL, SCIENTIFIC, AND INDUSTRIAL APPLICATIONS XIV, 2014, 8972
  • [29] Hydroxyapatite Whisker-reinforced Composite Scaffolds Through 3D Printing for Bone Repair
    Xin Chen
    Qi Xin
    Zhu Min
    Zhao Shi-Chang
    Zhu Yu-Fang
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (08) : 837 - 844
  • [30] Constrained stochastic state estimation of deformable 1D objects: Application to single-view 3D reconstruction of catheters with radio-opaque markers
    Trivisonne, Raffaella
    Kerrien, Erwan
    Cotin, Stephane
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 81