A Modified MobileNetV3 Model Using an Attention Mechanism for Eight-Class Classification of Breast Cancer Pathological Images
被引:1
|
作者:
Guo, Chang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R ChinaDalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
Guo, Chang
[1
]
Zhou, Qingjian
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R ChinaDalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
Zhou, Qingjian
[1
]
Jiao, Jia
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R ChinaDalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
Jiao, Jia
[1
]
Li, Qingyang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R ChinaDalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
Li, Qingyang
[1
]
Zhu, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R ChinaDalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
Zhu, Lin
[1
]
机构:
[1] Dalian Minzu Univ, Coll Sci, Dalian 116600, Peoples R China
来源:
APPLIED SCIENCES-BASEL
|
2024年
/
14卷
/
17期
基金:
中国国家自然科学基金;
关键词:
MobileNetV3;
breast cancer;
image classification;
attention mechanism;
D O I:
10.3390/app14177564
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Addressing the challenge of achieving precise subtype classification of breast cancer histopathology images with limited resources, a lightweight model incorporating multi-stage information fusion and an attention mechanism is proposed for this task. Using MobileNetV3 as the backbone, a multi-stage fusion strategy captures the rich image information in breast cancer histopathology images. Additionally, the selective kernel (SK) attention mechanism is introduced in the initial stages of feature extraction, while an improved squeeze-and-excitation coordinate attention (SCA) mechanism is integrated in the later stages to enhance the extraction of both underlying and semantic features. The final feature representations for subtype classification are determined based on the attention map weights computed at each stage. The experimental results demonstrate the model's outstanding recognition performance on the BreakHis dataset, achieving subtype classification accuracies of 96.259%, 94.763%, 95.511%, and 94.015% at four different magnifications.
机构:
Department of Computer Science and Engineering, GITAM School of Technology, GITAM University, Karnataka, BengaluruDayananda Sagar University, Karnataka, Bangalore
机构:
School of Electronic and Information Engineering,Nanjing University of Information Science and Technology
Institute for AI in Medicine,School of Artificial Intelligence,Nanjing University of Information Science and TechnologySchool of Electronic and Information Engineering,Nanjing University of Information Science and Technology
Jianjun Zhuang
Xiaohui Wu
论文数: 0引用数: 0
h-index: 0
机构:
School of Electronic and Information Engineering,Nanjing University of Information Science and TechnologySchool of Electronic and Information Engineering,Nanjing University of Information Science and Technology
Xiaohui Wu
Dongdong Meng
论文数: 0引用数: 0
h-index: 0
机构:
School of Electronic and Information Engineering,Nanjing University of Information Science and TechnologySchool of Electronic and Information Engineering,Nanjing University of Information Science and Technology
Dongdong Meng
Shenghua Jing
论文数: 0引用数: 0
h-index: 0
机构:
Department of Radiation Oncology,Jinling Hospital,School of Medicine Nanjing UniversitySchool of Electronic and Information Engineering,Nanjing University of Information Science and Technology
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Wang, Lingxiao
Yang, Yingyun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Gastroenterol, Beijing, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Yang, Yingyun
Li, Jingyang
论文数: 0引用数: 0
h-index: 0
机构:
Tiangong Univ, Sch Life Sci, Tianjin, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Li, Jingyang
Tian, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Capital Med Univ, Liang Xiang Hosp, Beijing, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Tian, Wei
He, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Gastroenterol, Beijing, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
He, Kun
Xu, Tianming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Gastroenterol, Beijing, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Xu, Tianming
Fang, Zhaohui
论文数: 0引用数: 0
h-index: 0
机构:
Ningcheng Cent Hosp, Dept Gastroenterol, Chifeng, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Fang, Zhaohui
Yang, Aiming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Gastroenterol, Beijing, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China
Yang, Aiming
Li, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R ChinaChinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin, Peoples R China