Air-water flows

被引:2
|
作者
Valero, Daniel [1 ]
Felder, Stefan [2 ]
Kramer, Matthias [3 ]
Wang, Hang [4 ]
Carrillo, Jose M. [5 ]
Pfister, Michael [6 ]
Bung, Daniel B. [7 ]
机构
[1] Imperial Coll London, Dept Civil & Environm Engn, London, England
[2] UNSW Sydney, Sch Civiland Environm Engn, Water Res Lab, Sydney, NSW, Australia
[3] UNSW Canberra, Sch Engn & Technol SET, Canberra, Australia
[4] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu, Peoples R China
[5] Univ Politecn Cartagena, Hydraul Engn Area, Cartagena, Spain
[6] Haute Ecole Ingn & Architecture Fribourg, Filiere Genie Civil, Fribourg, Switzerland
[7] Univ Appl Sci, FH Aachen, Aachen, Germany
关键词
Air entrainment; bubble; dam; hydraulic structure; instrumentation; PHASE-DETECTION PROBES; TURBULENT FREE-SURFACE; HYDRAULIC JUMPS; PRESSURE-FLUCTUATIONS; NUMERICAL-SIMULATION; BUBBLE ENTRAINMENT; STEPPED SPILLWAYS; SCALE DEPENDENCE; NONAERATED FLOW; SKIMMING FLOW;
D O I
10.1080/00221686.2024.2379482
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
High Froude-number open-channel flows can entrain significant volumes of air, a phenomenon that occurs continuously in spillways, in free-falling jets and in hydraulic jumps, or as localized events, notably at the toe of hydraulic jumps or in plunging jets. Within these flows, turbulence generates millions of bubbles and droplets as well as highly distorted wavy air-water interfaces. This phenomenon is crucial from a design perspective, as it influences the behaviour of high-velocity flows, potentially impairing the safety of dam operations. This review examines recent scientific and engineering progress, highlighting foundational studies and emerging developments. Notable advances have been achieved in the past decades through improved sampling of flows and the development of physics-based models. Current challenges are also identified for instrumentation, numerical modelling and (up)scaling that hinder the formulation of fundamental theories, which are instrumental for improving predictive models, able to offer robust support for the design of large hydraulic structures at prototype scale.
引用
收藏
页码:319 / 339
页数:21
相关论文
共 50 条
  • [21] Air-Water Flows and Head Losses on Stepped Spillways with Inclined Steps
    Nina, Yvan Arosquipa
    Shi, Rui
    Wuthrich, Davide
    Chanson, Hubert
    JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2022, 148 (11)
  • [22] Measurements of wall shear stress in horizontal air-water bubbly flows
    Su, Yuliang
    Zhang, Mingyuan
    Zhu, Xianran
    Hu, Qihui
    Geng, Yanhong
    FLOW MEASUREMENT AND INSTRUMENTATION, 2010, 21 (03) : 373 - 381
  • [23] An experimental study of air-water flows in hydraulic jumps on flat slopes
    Montano, Laura
    Felder, Stefan
    JOURNAL OF HYDRAULIC RESEARCH, 2020, 58 (05) : 767 - 777
  • [24] A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface
    Basualdo, Franco N. Pinan
    Bolopion, A.
    Gauthier, M.
    Lambert, P.
    SCIENCE ROBOTICS, 2021, 6 (52)
  • [25] Unsteady air-water flow measurements in sudden open channel flows
    Chanson, H
    EXPERIMENTS IN FLUIDS, 2004, 37 (06) : 899 - 909
  • [26] Analytical and Numerical Study of Novel Scaling Laws for Air-Water Flows
    Catucci, Daniele
    Briganti, Riccardo
    Heller, Valentin
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 4551 - 4560
  • [27] TURBULENT MIXING FOR AIR-WATER FLOWS IN SIMULATED ROD BUNDLE GEOMETRICS
    RUDZINSK.KF
    SINGH, K
    STPIERRE, CC
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1972, 50 (02): : 297 - &
  • [28] Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway
    Gonzalez, C. A.
    Chanson, H.
    JOURNAL OF HYDRAULIC RESEARCH, 2008, 46 (01) : 65 - 72
  • [29] Turbulence manipulation in air-water flows on a stepped chute: An experimental study
    Gonzalez, C. A.
    Chanson, H.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2008, 27 (04) : 388 - 408
  • [30] Physical modelling and scale effects of air-water flows on stepped spillways
    CHANSON Hubert
    GONZALEZ Carlos A.
    Journal of Zhejiang University Science A(Science in Engineering), 2005, (03) : 90 - 97