Flotation is a crucial separation technique in coal beneficiation. However, the inability to quickly and accurately detect ash content during the flotation process hinders the development of flotation automation. This paper introduced a novel hybrid model based on convolutional neural networks, establishing the ash content in tailings. In this method, convolutional neural network is utilized to automatically extract features from tailings images. In the model training and optimization phase after inputting the augmented data, the optimal ResNet18 model is identified by comparing five model optimization methods and replacing the SoftMax classifier with the traditional SVR in ResNet18. Additionally, a PCA-SVR model for predicting tailings ash content is constructed for comparative analysis, employing six different feature combinations to validate the effectiveness of the proposed features, with optimal support vector parameters identified through random search and cross-validation algorithms. The prediction results show that the PCA-SVR model has the highest accuracy when the feature dimension is reduced to 16, and the prediction of ResNet18-SVR is more accurate compared to PCA-SVR. This indicates that the proposed method can predict the ash content more accurately than the traditional feature engineering methods and has a broad application prospect in the field of coal beneficiation.
机构:
Univ Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, BrazilUniv Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, Brazil
Olescki, G.
Clementin de Andrade, Joao M. C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Parana, Dept Internal Med, Curitiba, Parana, BrazilUniv Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, Brazil
Clementin de Andrade, Joao M. C.
Escuissato, Dante L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Parana, Dept Internal Med, Curitiba, Parana, BrazilUniv Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, Brazil
Escuissato, Dante L.
Oliveira, Lucas F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, BrazilUniv Fed Parana, Dept Informat, R Evaristo F Ferreira da Costa 383-391, BR-82590300 Curitiba, Parana, Brazil
Oliveira, Lucas F.
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION,
2023,
11
(03):
: 341
-
350