Prediction of Total Soluble Solids Content Using Tomato Characteristics: Comparison Artificial Neural Network vs. Multiple Linear Regression

被引:1
|
作者
Kabas, Aylin [1 ]
Ercan, Ugur [2 ]
Kabas, Onder [3 ]
Moiceanu, Georgiana [4 ]
机构
[1] Akdeniz Univ, Manavgat Vocat Sch, Dept Organ Farming, TR-07070 Antalya, Turkiye
[2] Akdeniz Univ, Dept Informat, TR-07070 Antalya, Turkiye
[3] Akdeniz Univ, Tech Sci Vocat Sch, Dept Machine, TR-07070 Antalya, Turkiye
[4] Natl Univ Sci & Technol Politehn Bucharest, Fac Entrepreneurship Business Engn & Management, Dept Entrepreneurship & Management, Bucharest 060042, Romania
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 17期
关键词
Artificial Neural Networks; multiple linear regression; brix; tomato; INTROGRESSION LINE; SUGAR CONTENT; SEED YIELD; FRUIT; LYCOPENE; WEIGHT; CHLOROPHYLL; PERFORMANCE; MODELS; SINGLE;
D O I
10.3390/app14177741
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tomatoes are among the world's most significant vegetables, both in terms of production and consumption. Harvesting takes place in tomato production when the important quality attribute of total soluble solids content reaches its maximum possible level. Tomato total soluble solids content (TSS) is among the most crucial attribute parameters for assessing tomato quality and for tomato commercialization. Determination of total soluble solids content by conventional measurement methods is both destructive and time-consuming. Therefore, the tomato processing industry needs a rapid identification method to measure total soluble solids content (TSS). In this study, we aimed to estimate how much soluble solids there are in beef tomato fruit by Artificial Neural Networks (ANN) and Multiple Linear Regression (MLR) methods. The models were assessed using the Coefficient of Determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) metrics. The training data set results of the MLR model established to estimate the amount of brix in tomato fruit, calculated as MAE: 0.2349, RMSE: 0.3048, R2: 0.8441, and MAPE: 5.5368, while, according to the ANN model, MAE: 0.0250, RMSE: 0.031, R2: 0.9982 and MAPE: 0.5814. According to the metric outcomes, the ANN-based model performed better in both the training and testing parts.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Comparison of artificial neural network and multiple linear regression for prediction of first lactation milk yield using early body weights in Sahiwal cattle
    Manoj, M.
    Gandhi, R. S.
    Raja, T., V
    Ruhil, A. P.
    Singh, A.
    Gupta, A. K.
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2014, 84 (04): : 427 - 430
  • [32] Comparison of artificial neural networks and multiple linear regression for prediction of dairy cow locomotion score
    Norouzian, Mohammad Ali
    Bayatani, Hossein
    Alavijeh, Mona Vakili
    VETERINARY RESEARCH FORUM, 2021, 12 (01) : 33 - 37
  • [33] Electricity Consumption Forecasting in Thailand Using an Artificial Neural Network and Multiple Linear Regression
    Panklib, K.
    Prakasvudhisarn, C.
    Khummongkol, D.
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2015, 10 (04) : 427 - 434
  • [34] PREDICTION OF pH AND TOTAL SOLUBLE SOLIDS CONTENT OF MANGO USING BIRESPONSE MULTIPREDICTOR LOCAL POLYNOMIAL NONPARAMETRIC REGRESSION
    Ulya, Millatul
    Chamidah, Nur
    Saifudin, Toha
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [35] Quarter Circular Breakwater: Prediction of Transmission Using Multiple Regression and Artificial Neural Network
    Goyal, Rushil
    Singh, Kriti
    Hegde, Arkal Vittal
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2014, 48 (01) : 92 - 98
  • [36] Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws
    Hsu, Ching-Chi
    Lin, Jinn
    Chao, Ching-Kong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : 341 - 348
  • [37] An Empirical Comparison of Multiple Linear Regression and Artificial Neural Network for Concrete Dam Deformation Modelling
    Li, Mingjun
    Wang, Junxing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [38] Comparison of the performance of an artificial neural network and multiple linear regression in the prediction of the biological activity of cocaine analogues from molecular descriptors
    Puerta, Luis
    Labrador, Henry
    Arnias, Mario
    INGENIERIA UC, 2022, 29 (03): : 274 - 278
  • [39] Comparison of Artificial Neural Network and Multiple Regression Analysis for Prediction of Fat Tail Weight of Sheep
    Norouzian, M. A.
    Alavijeh, M. Vakili
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2016, 6 (04): : 895 - 900
  • [40] COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND MULTIPLE REGRESSION FOR THE PREDICTION OF SUPERFICIAL ROUGHNESS IN DRY TURNING
    Morales-Tamayo, Yoandrys
    Zamora-Hernandez, Yusimit
    Vasquez-Carrera, Paco
    Porras-Vasconez, Mario
    Barzaga-Quesada, Joao
    Lopez-Bustamante, Ringo
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2018, (19): : 79 - 88