Groups whose non-normal subgroups are either nilpotent or minimal non-nilpotent

被引:0
|
作者
Dastborhan, Nasrin [1 ]
Mousavi, Hamid [1 ]
机构
[1] Univ Tabriz, Fac Math Sci, Dept Pure Math, Tabriz, Iran
关键词
Meta-Ni-Hamilponian; Para-Nil-Hmiltonian;
D O I
10.1007/s11587-024-00870-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Nil be the class of nilpotent groups and G be a group. We call G a meta-Nil-Hamiltonian group if any of its non-Nil subgroups is normal. Also, we call G a para-Nil-Hamiltonian group if G is a non-Nil group and every non-normal subgroup of G is either a Nil-group or a minimal non-Nil group. In this paper we investigate the class of finitely generated meta-Nil-Hamiltonian and para-Nil-Hamiltonian groups.
引用
收藏
页码:869 / 882
页数:14
相关论文
共 50 条
  • [21] MINIMAL NON-NILPOTENT GROUPS WHICH ARE SUPERSOLVABLE
    Russo, Francesco G.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 18 (01): : 79 - 88
  • [22] A note on groups whose non-normal subgroups are either abelian or minimal non-abelian
    Atlihan, Sevgi
    de Giovanni, Francesco
    RICERCHE DI MATEMATICA, 2018, 67 (02) : 891 - 898
  • [23] A note on groups whose non-normal subgroups are either abelian or minimal non-abelian
    Sevgi Atlıhan
    Francesco de Giovanni
    Ricerche di Matematica, 2018, 67 : 891 - 898
  • [24] FINITE GROUPS WITH GIVEN QUANTITATIVE NON-NILPOTENT SUBGROUPS
    Shi, Jiangtao
    Zhang, Cui
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3346 - 3355
  • [25] Minimal Non-nilpotent and Locally Nilpotent Fusion Systems
    Liao, Jun
    Liu, Yanjun
    ALGEBRA COLLOQUIUM, 2016, 23 (03) : 455 - 462
  • [26] The existence of large commutator subgroups in factors and subgroups of non-nilpotent groups
    Kaplan, G
    Lev, A
    ARCHIV DER MATHEMATIK, 2005, 85 (03) : 197 - 202
  • [27] A finiteness condition on non-nilpotent subgroups
    Longobardi, P
    Maj, M
    Smith, H
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (11) : 3567 - 3588
  • [28] The existence of large commutator subgroups in factors and subgroups of non-nilpotent groups
    Gil Kaplan
    Arieh Lev
    Archiv der Mathematik, 2005, 85 : 197 - 202
  • [29] Locally graded groups with all non-nilpotent subgroups permutable
    Atlihan, Sevgi
    Dixon, Martyn R.
    Evans, Martin J.
    JOURNAL OF ALGEBRA, 2023, 632 : 62 - 69
  • [30] FINITE GROUPS WITH GIVEN QUANTITATIVE NON-NILPOTENT SUBGROUPS II
    Shi, Jiangtao
    Zhang, Cui
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4248 - 4252