Ince-Gaussian laser beams as superposition of Hermite-Gaussian or Laguerre-Gaussian beams

被引:0
|
作者
Abramochkin, E. G. [1 ]
Kotlyar, V. V. [2 ]
Kovalev, A. A. [3 ]
机构
[1] Lebedev Phys Inst, Novo Sadovaya 221, Samara 443011, Russia
[2] NRC Kurchatov Inst, Image Proc Syst Inst, Molodogvardeyskaya 151, Samara 443001, Russia
[3] Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
Ince-Gaussian beams; Laguerre-Gaussian beams; Hermite-Gaussian beams; elliptic beams; characteristic equation; EQUATION;
D O I
10.18287/2412-6179-CO-1466
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We obtain explicit analytic expressions for the Ince-Gaussian (IG) beams for several first indices p = 3, 4, 5, 6. Earlier, explicit expressions have been derived for amplitudes of the IG beams with p = 0, 1, 2 and without regard for the ellipticity parameter. Here, we give expressions for the amplitudes of 24 IG beams written as superpositions of the Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) beams, with the superposition coefficients explicitly depending on the ellipticity parameter. Simultaneously expressing the IG modes both via the LG and HG modes allows easily obtaining the IG modes in the extreme cases when the ellipticity parameter is zero or infinite. Explicit dependence of the obtained expressions for the IG modes on the ellipticity allows the intensity pattern at the beam cross-section to be varied by continuously varying the parameter value. For the first time, intensity distributions are obtained for the IG beams with negative ellipticity parameter.
引用
收藏
页码:501 / 510
页数:11
相关论文
共 50 条
  • [31] Ince-Gaussian beams in the generalized Lorenz-Mie theory through finite series Laguerre-Gaussian beam shape coefficients
    Votto, Luiz Felipe
    Chafiq, Abdelghani
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    Belafhal, Abdelmajid
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 302
  • [32] Asymmetric Laguerre-Gaussian beams
    Kovalev, A. A.
    Kotlyar, V. V.
    Porfirev, A. P.
    PHYSICAL REVIEW A, 2016, 93 (06)
  • [33] Double Laguerre-Gaussian beams
    Kotlyar, V. V.
    Abramochkin, E. G.
    Kovalev, A. A.
    Savelyeva, A. A.
    COMPUTER OPTICS, 2022, 46 (06) : 872 - +
  • [34] Electron Laguerre-Gaussian beams
    McMorran, Benjamin J.
    Agrawal, Amit
    Anderson, Ian M.
    Herzing, Andrew
    Lezec, Henri J.
    McClelland, Jabez J.
    Unguris, John
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [35] Laguerre-Gaussian laser beams and ion traps
    Universitaet Konstanz, Konstanz, Germany
    Opt Commun, 3-4 (371-378):
  • [36] Generation of partially coherent Ince-Gaussian beams
    Yepiz, Adad
    Perez-Garcia, Benjamin
    Hernandez-Aranda, Raul I.
    LASER BEAM SHAPING XIX, 2019, 11107
  • [37] Elliptic Laguerre-Gaussian beams
    Kotlyar, VV
    Khonina, SN
    Almazov, AA
    Soifer, VA
    Jefimovs, K
    Turunen, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (01) : 43 - 56
  • [38] Laguerre-Gaussian laser beams and ion traps
    Power, WL
    Thompson, RC
    OPTICS COMMUNICATIONS, 1996, 132 (3-4) : 371 - 378
  • [39] Metasurface for Engineering Superimposed Ince-Gaussian Beams
    Ahmed, Hammad
    Ansari, Muhammad Afnan
    Paterson, Lynn
    Li, Jia
    Chen, Xianzhong
    ADVANCED MATERIALS, 2024, 36 (21)
  • [40] Comparison of paraxial and nonparaxial Spheroidal-Gaussian modes with Hermite-Gaussian and Laguerre-Gaussian
    Landesman, BT
    LBOC - THIRD INTERNATIONAL WORKSHOP ON LASER BEAM AND OPTICS CHARACTERIZATION, 1996, 2870 : 163 - 172