Ince-Gaussian laser beams as superposition of Hermite-Gaussian or Laguerre-Gaussian beams

被引:0
|
作者
Abramochkin, E. G. [1 ]
Kotlyar, V. V. [2 ]
Kovalev, A. A. [3 ]
机构
[1] Lebedev Phys Inst, Novo Sadovaya 221, Samara 443011, Russia
[2] NRC Kurchatov Inst, Image Proc Syst Inst, Molodogvardeyskaya 151, Samara 443001, Russia
[3] Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
Ince-Gaussian beams; Laguerre-Gaussian beams; Hermite-Gaussian beams; elliptic beams; characteristic equation; EQUATION;
D O I
10.18287/2412-6179-CO-1466
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We obtain explicit analytic expressions for the Ince-Gaussian (IG) beams for several first indices p = 3, 4, 5, 6. Earlier, explicit expressions have been derived for amplitudes of the IG beams with p = 0, 1, 2 and without regard for the ellipticity parameter. Here, we give expressions for the amplitudes of 24 IG beams written as superpositions of the Laguerre-Gaussian (LG) or Hermite-Gaussian (HG) beams, with the superposition coefficients explicitly depending on the ellipticity parameter. Simultaneously expressing the IG modes both via the LG and HG modes allows easily obtaining the IG modes in the extreme cases when the ellipticity parameter is zero or infinite. Explicit dependence of the obtained expressions for the IG modes on the ellipticity allows the intensity pattern at the beam cross-section to be varied by continuously varying the parameter value. For the first time, intensity distributions are obtained for the IG beams with negative ellipticity parameter.
引用
收藏
页码:501 / 510
页数:11
相关论文
共 50 条
  • [1] Structurally Invariant Higher-Order Ince-Gaussian Beams and Their Expansions into Hermite-Gaussian or Laguerre-Gaussian Beams
    Abramochkin, Eugeny G.
    Kotlyar, Victor V.
    Kovalev, Alexey A.
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [2] Transformation of Hermite-Gaussian-beams into complex Hermite-Gaussian and Laguerre-Gaussian beams
    Laabs, H
    Gao, C
    Weber, H
    Kugler, N
    Zhao, C
    LASER RESONATORS II, 1999, 3611 : 258 - 268
  • [3] Generalized Asymmetric Hermite-Gaussian and Laguerre-Gaussian Beams
    Abramochkin, Eugeny G. G.
    Kotlyar, Victor V. V.
    Kovalev, Alexey A. A.
    Stafeev, Sergey S. S.
    PHOTONICS, 2023, 10 (06)
  • [4] COMPLEX ARGUMENT HERMITE-GAUSSIAN AND LAGUERRE-GAUSSIAN BEAMS
    ZAUDERER, E
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1986, 3 (04): : 465 - 469
  • [5] Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation
    Kim, HC
    Lee, YH
    OPTICS COMMUNICATIONS, 1999, 169 (1-6) : 9 - 16
  • [6] Elegant Hermite-Gaussian and Laguerre-Gaussian beams at a dielectric interface
    Nasalski, Wojciech
    OPTICA APPLICATA, 2010, 40 (03) : 615 - 622
  • [7] Quantization of Hermite-Gaussian and Laguerre-Gaussian beams and their spatial transformations
    Perinová, V
    Luks, A
    JOURNAL OF MODERN OPTICS, 2006, 53 (5-6) : 659 - 675
  • [8] Biaxial Gaussian Beams, Hermite-Gaussian Beams, and Laguerre-Gaussian Vortex Beams in Isotropy-Broken Materials
    Durach, Maxim
    PHOTONICS, 2024, 11 (11)
  • [9] Propagation of Hermite-Gaussian and Laguerre-Gaussian beams beyond the paraxial approximation
    Duan, KL
    Wang, BZ
    Lü, BD
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (09) : 1976 - 1980
  • [10] Coherent superposition propagation of Laguerre-Gaussian and Hermite-Gaussian solitons
    Song, Li-Min
    Yang, Zhen-Jun
    Li, Xing-Liang
    Zhang, Shu-Min
    APPLIED MATHEMATICS LETTERS, 2020, 102