The Performance of Multiple Imputation in Social Surveys with Missing Data from Planned Missingness and Item Nonresponse

被引:0
|
作者
Axenfeld, Julian B. [1 ]
Bruch, Christian [2 ]
Wolf, Christof [2 ,5 ]
Blom, Annelies G. [3 ,4 ,6 ]
机构
[1] German Inst Econ Res DIW Berlin, Berlin, Germany
[2] GESIS Leibniz Inst Social Sci, Mannheim, Germany
[3] Univ Bremen, OCIUM Res Ctr Inequal & Social Policy, Bremen, Germany
[4] Sociol Dept, Bremen, Germany
[5] Univ Mannheim, Mannheim Ctr European Social Res MZES, Mannheim, Germany
[6] Univ Bergen, DIGSSCORE Digital Social Sci Core Facil & Dept of, Bergen, Norway
来源
SURVEY RESEARCH METHODS | 2024年 / 18卷 / 02期
关键词
item nonresponse; imputation; planned missing data; split questionnaire design; SPLIT QUESTIONNAIRE DESIGN; PATTERNS; REGULARIZATION; SELECTION; MODELS; LENGTH;
D O I
10.18148/srm/2024.v18i2.8158
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This paper studies the quality of estimates from multiple imputation for the case of social survey data that combines planned missing data with missing data from conventional item nonresponse by survey participants. To this end, the paper uses a Monte Carlo simulation study on real data from the German Internet Panel. In this data, missingness is simulated based on item nonresponse with different mechanisms and proportions of item nonresponse as well as different proportions of planned missing data. Our results show that item nonresponse can jeopardize the quality of estimates after multiple imputation especially when the total amount of missing data from both sources is high or when there is a considerable proportion of item nonresponse that is missing not at random. Therefore, from an imputation perspective, survey designers should incorporate their expectations about item nonresponse on each variable when designing surveys with planned missing data.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 50 条
  • [21] Missing data in a multi-item instrument were best handled by multiple imputation at the item score level
    Eekhout, Iris
    de Vet, Henrica C. W.
    Twisk, Jos W. R.
    Brand, Jaap P. L.
    de Boer, Michiel R.
    Heymans, Martijn W.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2014, 67 (03) : 335 - 342
  • [22] Application of Multiple Imputation in Dealing with Missing Data in Agricultural Surveys: The Case of BMP Adoption
    Zhong, Hua
    Hu, Wuyang
    Penn, Jerrod M.
    JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 2018, 43 (01) : 78 - +
  • [23] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299
  • [24] MULTIPLE IMPUTATION AS A MISSING DATA MACHINE
    BRAND, J
    VANBUUREN, S
    VANMULLIGEN, EM
    TIMMERS, T
    GELSEMA, E
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1994, : 303 - 306
  • [25] Multiple imputation with missing data indicators
    Beesley, Lauren J.
    Bondarenko, Irina
    Elliot, Michael R.
    Kurian, Allison W.
    Katz, Steven J.
    Taylor, Jeremy M. G.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (12) : 2685 - 2700
  • [26] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [27] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [28] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [29] The Performance of Multiple Imputation for Likert-type Items with Missing Data
    Leite, Walter
    Beretvas, S. Natasha
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (01) : 64 - 74
  • [30] Multiple Imputation for Robust Cluster Analysis to Address Missingness in Medical Data
    Harder, Arnold A.
    Olbricht, Gayla R.
    Ekuma, Godwin
    Hier, Daniel B.
    Obafemi-Ajayi, Tayo
    IEEE ACCESS, 2024, 12 : 42974 - 42991