A Novel Urban Heat Vulnerability Analysis: Integrating Machine Learning and Remote Sensing for Enhanced Insights

被引:4
|
作者
Li, Fei [1 ]
Yigitcanlar, Tan [1 ]
Nepal, Madhav [1 ]
Thanh, Kien Nguyen [2 ]
Dur, Fatih [1 ]
机构
[1] Queensland Univ Technol, Fac Engn, Sch Architecture & Built Environm, City 4 0 Lab, 2 George St, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Fac Engn, Sch Elect Engn & Robot, 2 George St, Brisbane, Qld 4000, Australia
关键词
urban heat island; urban heat vulnerability; remote sensing; machine learning; artificial intelligence; urban sustainability; sustainable urban development; CLIMATE-CHANGE; HEALTH-RISK; INDEX; STRESS; AREA; PERFORMANCE; EXPOSURE; FRACTION; EVENTS;
D O I
10.3390/rs16163032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rapid urbanization and climate change exacerbate the urban heat island effect, increasing the vulnerability of urban residents to extreme heat. Although many studies have assessed urban heat vulnerability, there is a significant lack of standardized criteria and references for selecting indicators, building models, and validating those models. Many existing approaches do not adequately meet urban planning needs due to insufficient spatial resolution, temporal coverage, and accuracy. To address this gap, this paper introduces the U-HEAT framework, a conceptual model for analyzing urban heat vulnerability. The primary objective is to outline the theoretical foundations and potential applications of U-HEAT, emphasizing its conceptual nature. This framework integrates machine learning (ML) with remote sensing (RS) to identify urban heat vulnerability at both long-term and detailed levels. It combines retrospective and forward-looking mapping for continuous monitoring and assessment, providing essential data for developing comprehensive strategies. With its active learning capacity, U-HEAT enables model refinement and the evaluation of policy impacts. The framework presented in this paper offers a standardized and sustainable approach, aiming to enhance practical analysis tools. It highlights the importance of interdisciplinary research in bolstering urban resilience and stresses the need for sustainable urban ecosystems capable of addressing the complex challenges posed by climate change and increased urban heat. This study provides valuable insights for researchers, urban administrators, and planners to effectively combat urban heat challenges.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Urban landscape modeling and algorithms under machine learning and remote sensing data
    Song, Ting
    Lu, Guoying
    EARTH SCIENCE INFORMATICS, 2024, 17 (03) : 2303 - 2316
  • [22] Collecting Data for Urban Building Energy Modelling by Remote Sensing and Machine Learning
    Gorzalka, Philip
    Garbasevschi, Oana M.
    Schmiedt, Jacob Estevam
    Droin, Ariane
    Linkiewicz, Magdalena
    Wurm, Michael
    Hoffschmidt, Bernhard
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 1139 - 1146
  • [23] Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework
    Li F.
    Yigitcanlar T.
    Nepal M.
    Nguyen K.
    Dur F.
    Sustainable Cities and Society, 2023, 96
  • [24] Deep Learning for Urban Remote Sensing
    Audebert, Nicolas
    Boulch, Alexandre
    Randrianarivo, Hicham
    Le Saux, Bertrand
    Ferecatu, Marin
    Lefevre, Sebastien
    Marlet, Renaud
    2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [25] Machine learning in geosciences and remote sensing
    David JLary
    Amir HAlavi
    Amir HGandomi
    Annette LWalker
    Geoscience Frontiers, 2016, 7 (01) : 3 - 10
  • [26] Machine learning in geosciences and remote sensing
    Lary, David J.
    Alavi, Amir H.
    Gandomi, Amir H.
    Walker, Annette L.
    GEOSCIENCE FRONTIERS, 2016, 7 (01) : 3 - 10
  • [27] Machine learning in geosciences and remote sensing
    David J.Lary
    Amir H.Alavi
    Amir H.Gandomi
    Annette L.Walker
    Geoscience Frontiers, 2016, (01) : 3 - 10
  • [28] Optimizing feature selection and remote sensing classification with an enhanced machine learning method
    Ewees, Ahmed A.
    Alshahrani, Mohammed M.
    Alharthi, Abdullah M.
    Gaheen, Marwa A.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (02):
  • [29] Remote sensing and urban analysis
    Bianchin, Alberta
    Bravin, Laura
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 1, PROCEEDINGS, 2008, 5072 : 300 - 315
  • [30] Remote sensing and urban analysis
    Harris, R
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2002, 29 (01): : 156 - 156