Off-design performance analysis of supercritical CO2 mixture Brayton cycle with floating critical points

被引:5
|
作者
Luo, Yiyang [1 ]
Su, Zhanhang [2 ]
Li, Ziyang [1 ]
Zheng, Nan [1 ]
Wei, Jinjia [1 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Peoples R China
[2] North China Municipal Engn Design & Res Inst Co Lt, Tianjin 300381, Peoples R China
[3] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercritical CO 2 mixture Brayton cycle; Off-design performance; Dynamic distillation; Floating critical points; Control strategy; POWER CYCLE; PLANTS;
D O I
10.1016/j.solener.2024.112665
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermodynamic performance of supercritical CO2 (sCO2) Brayton cycle deteriorates significantly due to the mismatch between the cold source temperature and the working fluid's critical point. Here, we present the first study on the off-design performance of a novel supercritical CO2 mixture Brayton cycle with floating critical points. A distillation based regulation subsystem is integrated into the power cycle to dynamically adjust the circulating composition of the binary CO2 mixture, thereby making its critical point float with the ambient temperature and achieving good temperature matching. The off-design behavior of the system operating with the representative mixture is investigated based on an in-house code. The influence of trigger conditions of critical point regulation on energy consumption of the regulation process is investigated. When the maximum temperature difference of the design points for consecutive days is set to 3 degrees C, the equivalent power consumption can be limited to 2.34 x 106 MJ per year, which affects the annual efficiency by less than 1 %. The results confirms that using the floating critical point method can improve the annual efficiency by 7 %-10.9 % and improve the specific output power by 6.1 %-9.4 % compared to the sCO2 cycle, depending on the power plant locations.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Off-design operation of the dry-cooled supercritical CO2 power cycle
    Lock, Andrew
    Bone, Viv
    ENERGY CONVERSION AND MANAGEMENT, 2022, 251
  • [22] PERFORMANCE CHARACTERISTICS OF AN OPERATING SUPERCRITICAL CO2 BRAYTON CYCLE
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5, 2012, : 941 - 952
  • [23] Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
    Conboy, Thomas
    Wright, Steven
    Pasch, James
    Fleming, Darryn
    Rochau, Gary
    Fuller, Robert
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [24] Off-design performance analysis of a transcritical CO2 Rankine cycle with LNG as cold source
    Wang, Jianyong
    Wang, Jiangfeng
    Dai, Yiping
    Zhao, Pan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (09) : 774 - 783
  • [25] Off-design optimization for solar power plant coupling with a recompression supercritical CO2 Brayton cycle and a turbine-driven main compressor
    Wan, Xiang
    Wang, Kun
    Zhang, Cheng-Ming
    Zhang, Tie-Chen
    Min, Chun-Hua
    APPLIED THERMAL ENGINEERING, 2022, 209
  • [26] Off-design performance of micro-scale solar Brayton cycle
    Akba, Tufan
    Baker, Derek K.
    Menguec, M. Pinar
    ENERGY CONVERSION AND MANAGEMENT, 2023, 289
  • [27] Thermal Hydraulic Performance Analysis of PCHE Precooler for Supercritical CO2 Brayton Cycle
    Lu, Mingjian
    Yan, Xinping
    Sun, Yuwei
    Wang, Jian
    Gong, Zikang
    2019 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION INFORMATION AND SAFETY (ICTIS 2019), 2019, : 537 - 541
  • [28] DESIGN OF AN EXPERIMENTAL TEST FACILITY FOR SUPERCRITICAL CO2 BRAYTON CYCLE
    Garg, Pardeep
    Kumar, Pramod
    Dutta, Pradip
    Conboy, Thomas
    Ho, Clifford
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2014, VOL 1, 2014,
  • [29] Direction for High-Performance Supercritical CO2 Centrifugal Compressor Design for Dry Cooled Supercritical CO2 Brayton Cycle
    Cho, Seong Kuk
    Bae, Seong Jun
    Jeong, Yongju
    Lee, Jekyoung
    Lee, Jeong Ik
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [30] Study on the performance of supercritical CO2 Brayton cycle based on Aspen
    Xie, Rong
    Yu, Jian-Yao
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2021, 42 (10): : 2544 - 2552