Structural, physical, optical, and gamma ray shielding properties of SnO2-based boro-silicate glasses: The influence of substituting Na2O by SnO2

被引:2
|
作者
Marashdeh, Mohammad W. [1 ]
Mahmoud, K. A. [2 ,3 ]
Akhdar, Hanan [1 ]
Tharwat, Mohamed [4 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Phys, POB 90950, Riyadh 11623, Saudi Arabia
[2] Ural Fed Univ, St Mira 19, Ekaterinburg 620002, Russia
[3] Nucl Mat Author, POB 530, Cairo, Egypt
[4] Menoufia Univ, Fac Elect Engn, Phys & Engn Math Dept, Menoufia 32952, Egypt
关键词
Boro-silicate glasses; Optical properties; Tin oxide; Protection ability; ELECTRONIC POLARIZABILITY; SPECTRA; EXPOSURE;
D O I
10.1016/j.net.2024.04.029
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The study focuses on creating new boro-silicate glasses doped with SnO2 for radiation shielding. It examines how substituting Na2O with SnO2 affects their structural, optical, and shielding properties. Density increases from 2.406 to 2.488 g/cm3 with rising SnO2, measured via the Archimedes Method. The examination for the glassy phase was performed using the XRD diffractometer. UV/Vis spectrophotometer analysis reveals reduced refractive index (2.412-1.976) and increased optical absorption-band gap (direct: 3.648-5.662 eV; indirect: 2.994-5.163 eV) with SnO2 concentrations of 0-9 mol.%). The effectiveness of the radiation shielding was assessed over the 0.059-1.408 MeV gamma-ray energy interval. The analysis demonstrates that when the concentration of SnO2 increases, the synthesized glasses' linear attenuation coefficient improves. As the SnO2 content was raised between 0 and 9 mol%, the linear attenuation coefficient rose between 0.489 and 2.892 cm(-1) (at energy of 0.059 MeV) and between 0.126 and 0.128 cm(-1) (at energy of 1.408 MeV), respectively. As the SnO2 content was raised between 0 and 9 mol%.
引用
收藏
页码:3804 / 3811
页数:8
相关论文
共 50 条
  • [31] Structural, optical and magnetic properties of SnO2 quantum dot
    E. Thamarai Selvi
    S. Meenakshi Sundar
    P. Selvakumar
    P. M. Ponnusamy
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 7713 - 7723
  • [32] Structural, optical and magnetic properties of SnO2 quantum dot
    Selvi, E. Thamarai
    Sundar, S. Meenakshi
    Selvakumar, P.
    Ponnusamy, P. M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (11) : 7713 - 7723
  • [33] Structural, electrical and optical properties of sintered SnO2 pellets
    Kumari, N.
    Ghosh, A.
    Tewari, S.
    Bhattacharjee, A.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2013, 16 (03) : 905 - 914
  • [34] An insight into the structural, electrical and optical properties of SnO2 nanoparticles
    Vinita Sharma
    Journal of Sol-Gel Science and Technology, 2017, 84 : 231 - 238
  • [35] X-RAY STRUCTURAL AND PHOTOELECTRIC PROPERTIES OF SnO2, ZnO, AND Zn2SnO4
    Mansurov, Khotamjon J.
    Boboev, Akramjon Y.
    Urinboyev, Jakhongir A.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2024, (02): : 336 - 340
  • [36] Influence of Li doping on the morphological evolution and optical & electrical properties of SnO2 nanomaterials and SnO2/Li2SnO3 composite nanomaterials
    Song, Zhichao
    Zhang, Jun
    Wang, Yan
    Li, Jianping
    CERAMICS INTERNATIONAL, 2021, 47 (17) : 23821 - 23826
  • [37] Optical and electrical properties of SnO2/Ag/SnO2/SiO2/Nb2O5 hybrid film
    Kim, Jin-Gyun
    Yoon, Sang-Moo
    Jang, Gun-Eik
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2016, 17 (02): : 80 - 84
  • [38] Structural properties of Bi2O3-B2O3-SiO2-Na2O glasses for gamma ray shielding applications
    Kaur, Kulwinder
    Singh, K. J.
    Anand, Vikas
    RADIATION PHYSICS AND CHEMISTRY, 2016, 120 : 63 - 72
  • [39] MnO2 influence on the electrical properties of SnO2-based ceramic systems
    Dibb, A
    Tebcherani, SM
    Santos, MRDC
    Cilense, M
    Varela, JA
    Longo, E
    ADVANCED POWDER TECHNOLOGY II, 2001, 189-1 : 161 - 165
  • [40] The influence of the synthesis route on the final properties of SnO2-based varistors
    Parra, R.
    Rodriguez-Paez, J. E.
    Varela, J. A.
    Castro, M. S.
    CERAMICS INTERNATIONAL, 2008, 34 (03) : 563 - 571