Nonlinear system identification using modified variational autoencoders

被引:1
|
作者
Paniagua, Jose L. [1 ]
Lopez, Jesus A. [1 ]
机构
[1] Univ Autonoma Occidente, Fac Ingn, Cali 760030, Colombia
来源
关键词
System identification; Deep learning; Generative modeling; Nonlinear dynamic systems; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1016/j.iswa.2024.200344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener- Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23 x 10-3, -3 , 16.69 x 10-3, -3 , 0.002 x 10-3 -3 and 0.037 x 10-3 -3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] SPEECH PREDICTION IN SILENT VIDEOS USING VARIATIONAL AUTOENCODERS
    Yadav, Ravindra
    Sardana, Ashish
    Namboodiri, Vinay P.
    Hegde, Rajesh M.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7048 - 7052
  • [42] Compressing Uniform Test Suites Using Variational Autoencoders
    Reichstaller, Andre
    Knapp, Alexander
    2017 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY COMPANION (QRS-C), 2017, : 435 - 440
  • [43] Hair removal in dermoscopy images using variational autoencoders
    Bardou, Dalal
    Bouaziz, Hamida
    Lv, Laishui
    Zhang, Ting
    SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (03) : 445 - 454
  • [44] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492
  • [45] Monaural Audio Source Separation using Variational Autoencoders
    Pandey, Laxmi
    Kumar, Anurendra
    Namboodiri, Vinay
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 3489 - 3493
  • [46] A VISUAL REPRESENTATION OF ENGINEERING CATALOGS USING VARIATIONAL AUTOENCODERS
    Sridhara, Saketh
    Suresh, Krishnan
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 3A, 2023,
  • [47] Seismic labeled data expansion using variational autoencoders
    Li, Kunhong
    Chen, Song
    Hu, Guangmin
    ARTIFICIAL INTELLIGENCE IN GEOSCIENCES, 2020, 1 : 24 - 30
  • [48] Generating NLFM Radar Waveforms using Variational Autoencoders
    Charlish, Alexander
    Schwalm, Carolin
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [49] CONTROLLING WEATHER FIELD SYNTHESIS USING VARIATIONAL AUTOENCODERS
    Oliveira, Dario A. B.
    Diaz, Jorge G.
    Zadrozny, Bianca
    Watson, Campbell D.
    Zhu, Xiao Xiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5027 - 5030
  • [50] Informative Language Encoding by Variational Autoencoders Using Transformer
    Ok, Changwon
    Lee, Geonseok
    Lee, Kichun
    APPLIED SCIENCES-BASEL, 2022, 12 (16):