Can the splashback radius be an observable boundary of galaxy clusters?

被引:2
|
作者
Lebeau, Theo [1 ]
Ettori, Stefano [1 ,2 ,3 ]
Aghanim, Nabila [1 ]
Sorce, Jenny G. [1 ,4 ,5 ]
机构
[1] Univ Paris Saclay, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France
[2] INAF, Osservatorio Astrofis & Sci Spazio, via Piero Gobetti 93-3, I-40129 Bologna, Italy
[3] INFN, Sez Bologna, viale Berti Pichat 6-2, I-40127 Bologna, Italy
[4] Univ Lille, CNRS, Cent Lille, UMR CRIStAL 9189, F-59000 Lille, France
[5] Leibniz Inst Astrophys AIP, Sternwarte 16, D-14482 Potsdam, Germany
关键词
methods: numerical; galaxies: clusters: intracluster medium; galaxies: clusters: individual: Virgo; HYDROSTATIC MASS BIAS; DARK-MATTER HALOES; VIRGO CLUSTER; OUTER REGIONS; GAS; EVOLUTION; SIMULATION; PROFILES; SHOCKS; DES;
D O I
10.1051/0004-6361/202450146
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The splashback radius was proposed as a physically motivated boundary of clusters as it sets the limit between the infalling and the orbitally dominated regions. However, galaxy clusters are complex objects connected to filaments of the cosmic web from which they accrete matter that disturbs them and modifies their morphology. In this context, estimating the splashback radius and the cluster boundary becomes challenging. In this work, we use a constrained hydrodynamical simulation replicating the Virgo cluster embedded in its large-scale structure to investigate the impact of its local environment on the splashback radius estimate. We identify the splashback radius from 3D radial profiles of dark matter density, gas density, and pressure in three regions representative of different dynamical states: accretion from spherical collapse, filaments, and matter outflow. We also identify the splashback radius from 2D-projected radial profiles of observation-like quantities: mass surface density, emission measure, and Compton-y. We show that the splashback radius mainly depends on the dynamics in each region and the physical processes traced by the different probes. We find multiple values for the splashback radius ranging from 3.3 +/- 0.2 to 5.5 +/- 0.3 Mpc. In particular, in the regions of collapsing and outflowing materials, the splashback radii estimated from gas density and pressure radial profiles overestimate that of the dark matter density profiles, which is considered the reference value given that the splashback radius was originally defined from dark matter simulations in pioneering works. Consequently, caution is required when using the splashback radius as a boundary of clusters, particularly in the case of highly disturbed clusters like Virgo. We conclude with a discussion of the detection of the splashback radius from pressure radial profiles, which could be more related to an accretion shock, and its detection from stacked radial profiles.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Splashback Radius in a Spherical Collapse Model
    Del Popolo, Antonino
    Le Delliou, Morgan
    UNIVERSE, 2022, 8 (09)
  • [22] The eROSITA Final Equatorial-Depth Survey (eFEDS) - Splashback radius of X-ray galaxy clusters using galaxies from HSC survey
    Rana, Divya
    More, Surhud
    Miyatake, Hironao
    Grandis, Sebastian
    Klein, Matthias
    Bulbul, Esra
    Chiu, I-Non
    Miyazaki, Satoshi
    Bahcall, Neta
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (03) : 4181 - 4195
  • [23] Gravitational waves from galaxy clusters: A new observable effect
    Quilis, V
    Ibanez, JM
    Saez, D
    ASTROPHYSICAL JOURNAL, 1998, 501 (01): : L21 - L24
  • [24] Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT
    Shin, T.
    Adhikari, S.
    Baxter, E. J.
    Chang, C.
    Jain, B.
    Battaglia, N.
    Bleem, L.
    Bocquet, S.
    DeRose, J.
    Gruen, D.
    Hilton, M.
    Kravtsov, A.
    McClintock, T.
    Rozo, E.
    Rykoff, E. S.
    Varga, T. N.
    Wechsler, R. H.
    Wu, H.
    Zhang, Z.
    Aiola, S.
    Allam, S.
    Bechtol, K.
    Benson, B. A.
    Bertin, E.
    Bond, J. R.
    Brodwin, M.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Carlstrom, J. E.
    Carnero Rosell, A.
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Choi, S. K.
    Cunha, C. E.
    Crawford, T. M.
    da Costa, L. N.
    De Vicente, J.
    Desai, S.
    Devlin, M. J.
    Dietrich, J. P.
    Doel, P.
    Dunkley, J.
    Eifler, T. F.
    Evrard, A. E.
    Flaugher, B.
    Fosalba, P.
    Gallardo, P. A.
    Garcia-Bellido, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (02) : 2900 - 2918
  • [25] Haloes at the ragged edge: the importance of the splashback radius
    Snaith, O. N.
    Bailin, J.
    Knebe, A.
    Stinson, G.
    Wadsley, J.
    Couchman, H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (03) : 2694 - 2712
  • [26] DENSITY JUMPS NEAR THE VIRIAL RADIUS OF GALAXY CLUSTERS
    Patej, Anna
    Loeb, Abraham
    ASTROPHYSICAL JOURNAL, 2016, 824 (02):
  • [27] The Halo Boundary of Galaxy Clusters in the SDSS
    Baxter, Eric
    Chang, Chihway
    Jain, Bhuvnesh
    Adhikari, Susmita
    Dalal, Neal
    Kravtsov, Andrey
    More, Surhud
    Rozo, Eduardo
    Rykoff, Eli
    Sheth, Ravi K.
    ASTROPHYSICAL JOURNAL, 2017, 841 (01):
  • [28] Evolution of splashback boundaries and gaseous outskirts: insights from mergers of self-similar galaxy clusters
    Zhang, Congyao
    Zhuravleva, Irina
    Kravtsov, Andrey
    Churazov, Eugene
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (01) : 839 - 863
  • [29] Evolution of the colour-radius and morphology-radius relations in SDSS galaxy clusters
    Goto, T
    Yagi, M
    Tanaka, M
    Okamura, S
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (02) : 515 - 518
  • [30] Turnaround radius of galaxy clusters in N-body simulations
    Korkidis, Giorgos
    Pavlidou, Vasiliki
    Tassis, Konstantinos
    Ntormousi, Evangelia
    Tomaras, Theodore N.
    Kovlakas, Konstantinos
    ASTRONOMY & ASTROPHYSICS, 2020, 639