Physics-informed neural network for nonlinear analysis of cable net structures

被引:1
|
作者
Mai, Dai D. [1 ]
Bao, Tri Diep [2 ]
Lam, Thanh-Danh [2 ]
Mai, Hau T. [2 ]
机构
[1] Ho Chi Minh City Univ Technol & Educ, Fac Mech Engn, Ho Chi Minh City, Vietnam
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, Ho Chi Minh City, Vietnam
关键词
Physics-informed neural network; Nonlinear analysis; Cable net structures; Deep neural network; Geometric nonlinearity; Static analysis; ELEMENT; FORMULATION;
D O I
10.1016/j.advengsoft.2024.103717
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, a Physics-Informed Neural Network (PINN) framework is extended and applied to predict the geometrically nonlinear responses of pretensioned cable net structures without utilizing any incrementaliterative algorithms as well as Finite Element Analyses (FEAs). Instead of solving nonlinear equations as in existing numerical models, the core idea behind this approach is to employ a Neural Network (NN) that minimizes a loss function. This loss function is designed to guide the learning process of the network based on Total Potential Energy (TPE), pretension forces, and Boundary Conditions (BCs). The NN itself models the displacements given the corresponding coordinates of joints as input data, with trainable parameters including weights and biases that are regarded as design variables. Within this computational framework, these parameters are automatically adjusted through the training process to get the minimum loss function. Once the learning is complete, the nonlinear responses of cable net structures can be easily and quickly obtained. A series of numerical examples is investigated to demonstrate the effectiveness and applicability of the PINN for the geometrically nonlinear analysis of cable net structures. The obtained results indicate that the PINN framework is remarkably simple to use, robust, and yields higher accuracy.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Acoustic scattering simulations via physics-informed neural network
    Nair, Siddharth
    Walsh, Timothy F.
    Pickrell, Gregory
    Semperlotti, Fabio
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2024, 2024, 12949
  • [42] A Physics-Informed Neural Network approach for compartmental epidemiological models
    Millevoi, Caterina
    Pasetto, Damiano
    Ferronato, Massimiliano
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (09)
  • [43] Predicting ocean pressure field with a physics-informed neural network
    Yoon, Seunghyun
    Park, Yongsung
    Gerstoft, Peter
    Seong, Woojae
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (03): : 2037 - 2049
  • [44] Probabilistic physics-informed neural network for seismic petrophysical inversion
    Li, Peng
    Liu, Mingliang
    Alfarraj, Motaz
    Tahmasebi, Pejman
    Grana, Dario
    GEOPHYSICS, 2024, 89 (02) : M17 - M32
  • [45] A Physics-Informed Neural Network Approach for Nearfield Acoustic Holography
    Olivieri, Marco
    Pezzoli, Mirco
    Antonacci, Fabio
    Sarti, Augusto
    SENSORS, 2021, 21 (23)
  • [46] Physics-informed convolutional neural network for microgrid economic dispatch
    Ge, Xiaoyu
    Khazaei, Javad
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 40
  • [47] Neuromorphic, physics-informed spiking neural network for molecular dynamics
    Pham, Vuong Van
    Muther, Temoor
    Kalantari Dahaghi, Amirmasoud
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [48] Optimizing a Physics-Informed Neural Network to solve the Reynolds Equation
    Lopez, Z. Sanchez
    Cortes, G. Berenice Diaz
    REVISTA MEXICANA DE FISICA, 2025, 71 (02)
  • [49] Physics-Informed Neural Network for Parameter Identification in a Piezoelectric Harvester
    Bai, C. Y.
    Yeh, F. Y.
    Shu, Y. C.
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946
  • [50] A Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization
    Perez-Rosero, Diego Armando
    Alvarez-Meza, Andres Marino
    Castellanos-Dominguez, Cesar German
    COMPUTERS, 2024, 13 (07)