Some examples of Swift-Hohenberg equation

被引:0
|
作者
Jani, Haresh P. [1 ]
Singh, Twinkle R. [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Math & Humanities, Surat 395007, Gujarat, India
来源
关键词
Swift-Hohenberg (S-H) equation; Partial differential equation; Homotopy perturbation method; Aboodh transform;
D O I
10.1016/j.exco.2022.100090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift-Hohenberg equation accurately describes pattern development and evolution. The Swift-Hohenberg (S-H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] EFFECTS OF EXTERNAL NOISE ON THE SWIFT-HOHENBERG EQUATION
    GARCIAOJALVO, J
    HERNANDEZMACHADO, A
    SANCHO, JM
    PHYSICAL REVIEW LETTERS, 1993, 71 (10) : 1542 - 1545
  • [32] On the Existence of Quasipattern Solutions of the Swift-Hohenberg Equation
    Iooss, G.
    Rucklidge, A. M.
    JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (03) : 361 - 394
  • [33] Dynamical Bifurcation of the Generalized Swift-Hohenberg Equation
    Choi, Yuncherl
    Han, Jongmin
    Park, Jungho
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (08):
  • [34] Generalized homoclinic solutions for the Swift-Hohenberg equation
    Deng, Shengfu
    Li, Xiaopei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 15 - 26
  • [35] Instability and stability of rolls in the Swift-Hohenberg equation
    Mielke, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (03) : 829 - 853
  • [36] Swift-Hohenberg equation for optical parametric oscillators
    Longhi, S
    Geraci, A
    PHYSICAL REVIEW A, 1996, 54 (05): : 4581 - 4584
  • [37] APPROXIMATE SOLUTIONS OF THE SWIFT-HOHENBERG EQUATION WITH DISPERSION
    Rouhparvar, H.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 71 - 80
  • [38] Localized states in the generalized Swift-Hohenberg equation
    Burke, John
    Knobloch, Edgar
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [39] Bifurcation analysis of a modified Swift-Hohenberg equation
    Xiao, Qingkun
    Gao, Hongjun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4451 - 4464
  • [40] Pattern selection of solutions of the Swift-Hohenberg equation
    Peletier, LA
    Rottschäfer, V
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) : 95 - 126