Computing Graph Hyperbolicity Using Dominating Sets

被引:0
|
作者
Coudert, David [1 ]
Nusser, Andre [2 ,3 ]
Viennot, Laurent [4 ]
机构
[1] Univ Cote dAzur, I3S, CNRS, INRIA, Nice, France
[2] Saarbrucken Grad Sch Comp Sci, Saarland Informat Campus, Saarbrucken, Germany
[3] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
[4] Paris Univ, Irif, CNRS, INRIA, Paris, France
关键词
Gromov hyperbolicity; graph algorithms; algorithm engineering; DECOMPOSITION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hyperbolicity is a graph parameter related to how much a graph resembles a tree with respect to distances. Its computation is challenging as the main approaches consist in scanning all quadruples of the graph or using fast matrix multiplication as building block, both are not practical for large graphs. In this paper, we propose and evaluate an approach that uses a hierarchy of distance-k dominating sets to reduce the search space. This technique, compared to the previous best practical algorithms, enables us to compute the hyperbolicity of graphs with unprecedented size (up to a million nodes).
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
  • [21] Minimal dominating sets in graph classes: Combinatorial bounds and enumeration
    Couturier, Jean-Francois
    Heggernes, Pinar
    van 't Hof, Pim
    Kratsch, Dieter
    THEORETICAL COMPUTER SCIENCE, 2013, 487 : 82 - 94
  • [22] CONDITIONAL GRAPH-THEORY .4. DOMINATING SETS
    HARARY, F
    HAYNES, TW
    UTILITAS MATHEMATICA, 1995, 48 : 179 - 192
  • [23] Some Properties of Zero Forcing Hop Dominating Sets in a Graph
    Manditong, Jahiri U.
    Tapeing, Aziz B.
    Hassan, Javier A.
    Bakkang, Alcyn R.
    Mohommad, Nurijam Hanna M.
    Kamdon, Sisteta U.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 324 - 337
  • [24] A tight upper bound on the average order of dominating sets of a graph
    Beaton, Iain
    Cameron, Ben
    JOURNAL OF GRAPH THEORY, 2024, 107 (03) : 463 - 477
  • [25] Reconfiguring Dominating Sets in Minor-Closed Graph Classes
    Rautenbach, Dieter
    Redl, Johannes
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2191 - 2205
  • [26] Partitioning the vertices of a cubic graph into two total dominating sets
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 52 - 63
  • [27] Computing transparently: the independent sets in a graph
    Tom Head
    Natural Computing, 2011, 10 : 129 - 138
  • [28] On computing the subset graph of a collection of sets
    Pritchard, P
    JOURNAL OF ALGORITHMS, 1999, 33 (02) : 187 - 203
  • [29] On computing graph minor obstruction sets
    Cattell, K
    Dinneen, MJ
    Downey, RG
    Fellows, MR
    Langston, MA
    THEORETICAL COMPUTER SCIENCE, 2000, 233 (1-2) : 107 - 127
  • [30] COMPUTING SETS OF SHORTEST PATHS IN A GRAPH
    MINIEKA, E
    COMMUNICATIONS OF THE ACM, 1974, 17 (06) : 351 - 353