Efficient Sparse Bayesian Learning Model for Image Reconstruction Based on Laplacian Hierarchical Priors and GAMP

被引:0
|
作者
Jin, Wenzhe [1 ]
Lyu, Wentao [1 ]
Chen, Yingrou [1 ]
Guo, Qing [2 ]
Deng, Zhijiang [3 ]
Xu, Weiqiang [1 ]
机构
[1] Zhejiang Sci Tech Univ, Key Lab Intelligent Text & Flexible Interconnect Z, Hangzhou 310018, Peoples R China
[2] Zhejiang Tech Innovat Serv Ctr, Hangzhou 310007, Peoples R China
[3] Fox Ess Co Ltd, Wenzhou 325024, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse Bayesian learning; generalized approximate message passing; Laplacian hierarchical priors;
D O I
10.3390/electronics13153038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel sparse Bayesian learning (SBL) method for image reconstruction. We integrate the generalized approximate message passing (GAMP) algorithm and Laplacian hierarchical priors (LHP) into a basic SBL model (called LHP-GAMP-SBL) to improve the reconstruction efficiency. In our SBL model, the GAMP structure is used to estimate the mean and variance without matrix inversion in the E-step, while LHP is used to update the hyperparameters in the M-step.The combination of these two structures further deepens the hierarchical structures of the model. The representation ability of the model is enhanced so that the reconstruction accuracy can be improved. Moreover, the introduction of LHP accelerates the convergence of GAMP, which shortens the reconstruction time of the model. Experimental results verify the effectiveness of our method.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Image Reconstruction Algorithm for Electrical Impedance Tomography Based on Block Sparse Bayesian Learning
    Liu, Shengheng
    Jia, Jiabin
    Yang, Yunjie
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 267 - 271
  • [22] Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors
    Luo, Jiahua
    Gan, Yanfen
    Vong, Chi-Man
    Wong, Chi-Man
    Chen, Chuangquan
    NEUROCOMPUTING, 2021, 457 : 106 - 116
  • [23] Non-blind image blur removal method based on a Bayesian hierarchical model with hyperparameter priors
    Yang, Haoyuan
    Su, Xiuqin
    Wu, Jing
    Chen, Songmao
    OPTIK, 2020, 204
  • [24] Sparse Bayesian Learning Using Adaptive LASSO Priors
    Bai Z.-L.
    Shi L.-M.
    Sun J.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (05): : 1193 - 1208
  • [25] Online Bayesian Sparse Learning with Spike and Slab Priors
    Fang, Shikai
    Zhe, Shandian
    Lee, Kuang-chih
    Zhang, Kai
    Neville, Jennifer
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 142 - 151
  • [26] BAYESIAN SPARSE IMAGE RECONSTRUCTION FOR MRFM
    Dobigeon, Nicolas
    Hero, Alfred O.
    Tourneret, Jean-Yves
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2933 - +
  • [27] Bayesian combination of sparse and non-sparse priors in image super resolution
    Villena, S.
    Vega, M.
    Babacan, S. D.
    Molina, R.
    Katsaggelos, A. K.
    DIGITAL SIGNAL PROCESSING, 2013, 23 (02) : 530 - 541
  • [28] MULTIPATH MITIGATION IN GLOBAL NAVIGATION SATELLITE SYSTEMS USING A BAYESIAN HIERARCHICAL MODEL WITH BERNOULLI LAPLACIAN PRIORS
    Lesouple, J.
    Tourneret, J-Y
    Sahmoudi, M.
    Barbiero, F.
    Faurie, F.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 578 - 582
  • [29] Direction-of-Arrival Estimation via Sparse Bayesian Learning Exploiting Hierarchical Priors with Low Complexity
    Li, Ninghui
    Zhang, Xiaokuan
    Lv, Fan
    Zong, Binfeng
    SENSORS, 2024, 24 (07)
  • [30] Image Reconstruction in Electrical Impedance Tomography Based on Structure-Aware Sparse Bayesian Learning
    Liu, Shengheng
    Jia, Jiabin
    Zhang, Yimin D.
    Yang, Yunjie
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (09) : 2090 - 2102