Vehicle Heterogeneous Multi-Source Information Fusion Positioning Method

被引:0
|
作者
Tang, Chengkai [1 ]
Wang, Chen [1 ]
Zhang, Lingling [2 ]
Zhang, Yi [1 ]
Song, Houbing [3 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[3] UMBC, Dept Informat Syst, Baltimore, MD 21250 USA
基金
中国国家自然科学基金;
关键词
Navigation; Satellite navigation systems; Radio navigation; Real-time systems; Heuristic algorithms; Global navigation satellite system; Loss measurement; Vehicle positioning; heterogeneous navigation source; information probability; information fusion; SENSOR FUSION; FACTOR GRAPH; LOCALIZATION; ALGORITHM; NAVIGATION;
D O I
10.1109/TVT.2024.3393720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the development of vehicle applications such as intelligent transportation and autonomous driving, the application fields based on location services have increasingly higher requirements for vehicle positioning reliability and real-time accuracy. However, the existing single navigation source of vehicles makes it difficult to realize real-time and high-precision positioning in different scenarios. The current multi-source information fusion methods have the problems of low generalization ability, poor expansibility, and high computational complexity, so it is challenging to apply in the field of vehicle positioning. To solve the above problems, this paper proposes a vehicle heterogeneous multi-source information fusion positioning method (MIFP) based on information probability, which converts the multiple heterogeneous navigation sources into information probability models to realize the unification of the time-frequency parameter format and designs an information fusion algorithm to realize the rapid fusion based on the theory of relative entropy. Through simulation tests and experimental verification by comparing with mainstream information fusion methods, such as the UKF method, the FGA method, and the NNA method, the MIFP method has high positioning accuracy and strong real-time performance. It can effectively solve the problems of weak expansion ability and large calculation amounts of current vehicle fusion positioning models. In the case of interference or mutation, the MIFP method can also suppress the influence of sudden errors on vehicle positioning.
引用
收藏
页码:12597 / 12613
页数:17
相关论文
共 50 条
  • [31] Medical image segmentation method based on multi-source information fusion
    Yang C.-C.
    Ye Z.-T.
    Liu B.-T.
    Wang K.
    Cui H.-D.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 226 - 234
  • [32] Modeling intelligence information: Multi-source fusion
    Yager, RR
    2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR HOMELAND SECURITY AND PERSONAL SAFETY, 2005, : 2 - 7
  • [33] Multi-source information fusion:Progress and future
    Xinde LI
    Fir DUNKIN
    Jean DEZERT
    ChineseJournalofAeronautics, 2024, 37 (07) : 24 - 58
  • [34] Multi-source information fusion: Progress and future
    Li, Xinde
    Dunkin, Fir
    Dezert, Jean
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (07) : 24 - 58
  • [35] A multi-source heterogeneous data fusion method for intelligent systems in the Internet of Things
    Sun, Rongrong
    Ren, Yuemei
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 23
  • [36] Multi-source Information Fusion for Depression Detection
    Wang, Rongquan
    Wang, Huiwei
    Hu, Yan
    Wei, Lin
    Ma, Huimin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 517 - 528
  • [37] Ensemble Learning for Multi-source Information Fusion
    Beyer, Joerg
    Heesche, Kai
    Hauptmann, Werner
    Otte, Clemens
    Kruse, Rudolf
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 748 - +
  • [38] Multi-source Heterogeneous Data Fusion Method for Pipe Gallery Condition Monitoring
    Wang, Gang
    Liu, Jingwen
    Li, Guopeng
    Li, Zhilei
    Gong, Zhidan
    Huang, Wenlin
    Wang, Helan
    Cai, Guoyuan
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1359 - 1363
  • [39] Indoor Positioning Algorithm Fusing Multi-Source Information
    Hengliang Tang
    Fei Xue
    Tao Liu
    Mingru Zhao
    Chengang Dong
    Wireless Personal Communications, 2019, 109 : 2541 - 2560
  • [40] Multi-source information fusion and its application
    You, Linru
    Zhang, Jinge
    Wang, Yan
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2000, 32 (04): : 101 - 103