A Structure Modality Enhanced Multimodal Imaging Method for Electrical Impedance Tomography Pressure Distribution Measurement

被引:0
|
作者
Chen, Huaijin [1 ,2 ]
Wang, Zhanwei [1 ,2 ]
Langlois, Kevin [1 ,2 ]
Verstraten, Tom [1 ]
Vanderborght, Bram [1 ,2 ]
机构
[1] Vrije Univ Brussel, BruBot, B-1050 Brussels, Belgium
[2] imec, B-1050 Brussels, Belgium
关键词
Sensors; Electrical impedance tomography; Pressure sensors; Conductivity; Pressure measurement; Sensitivity; Robot sensing systems; Electrical impedance tomography (EIT); multimodal sensor fusion; pressure distribution measurement; RECONSTRUCTION; PATTERN; SENSOR; TOUCH;
D O I
10.1109/TIM.2024.3436112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical impedance tomography (EIT) based pressure distribution sensors have the advantages of a simple structure and the ability to continuously measure pressure over a large area, making it a promising solution for large-scale artificial robotic skin. However, achieving high spatial resolution reconstruction of pressure distribution with EIT pressure sensors is challenging because the positions, sizes, and magnitudes of the pressure of the compressed areas are deeply coupled and mutually influenced in the EIT reconstructed results. To address this issue, a novel multimodal EIT pressure distribution measurement method is proposed. In this method, a structure modality EIT pressure sensor is designed to provide independent position and size information of the compressed areas to complement the pressure distribution measured using a normal EIT pressure sensor. A multimodal convolutional neural network (CNN) was designed to fuse the multimodal EIT sensors. The simulations and experiments demonstrate that the proposed multimodal EIT sensor outperforms the regular single-modality EIT sensor.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Basic study of a diagnostic modality employing a new electrical impedance tomography (EIT) method for noninvasive measurement in localized tissues
    Okazaki, Kenji
    Tangoku, Akira
    Morimoto, Tadaoki
    Kotani, Ryosuke
    Hattori, Keigo
    Yasuno, Emiko
    Akutagawa, Masatake
    Kinouchi, Yohsuke
    JOURNAL OF MEDICAL INVESTIGATION, 2010, 57 (3-4): : 205 - 218
  • [12] Enhancing Impedance Imaging Through Multimodal Tomography
    Guersoy, Doga
    Mamatjan, Yasin
    Adler, Andy
    Scharfetter, Hermann
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (11) : 3215 - 3224
  • [13] A Measurement System for Electrical Impedance Tomography
    Kriz, T.
    Roubal, Z.
    Rez, J.
    PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 905 - 909
  • [14] IMAGING THE COMPLEX IMPEDANCE IN ELECTRICAL-IMPEDANCE TOMOGRAPHY
    JOSSINET, J
    TRILLAUD, C
    CLINICAL PHYSICS AND PHYSIOLOGICAL MEASUREMENT, 1992, 13 : 47 - 50
  • [15] A Regularization-Guided Deep Imaging Method for Electrical Impedance Tomography
    Fu, Rong
    Wang, Zichen
    Zhang, Xinyu
    Wang, Di
    Chen, Xiaoyan
    Wang, Huaxiang
    IEEE SENSORS JOURNAL, 2022, 22 (09) : 8760 - 8771
  • [16] Inverse method for imaging a free surface using electrical impedance tomography
    Butler, JE
    Bonnecaze, RT
    CHEMICAL ENGINEERING SCIENCE, 2000, 55 (07) : 1193 - 1204
  • [17] Approximation error method for imaging the human head by electrical impedance tomography*
    Candiani, V
    Hyvonen, N.
    Kaipio, J. P.
    Kolehmainen, V
    INVERSE PROBLEMS, 2021, 37 (12)
  • [18] Measurement-Based Domain Parameter Optimization in Electrical Impedance Tomography Imaging
    Dusek, Jan
    Mikulka, Jan
    SENSORS, 2021, 21 (07)
  • [19] A pressure mapping imaging device based on electrical impedance tomography of conductive fabrics
    Yao, A.
    Soleimani, M.
    SENSOR REVIEW, 2012, 32 (04) : 310 - 317
  • [20] An optimizing design method for electrode structure parameter of electrical impedance tomography
    Wang Yan
    Sha Hong
    Ren Chaoshi
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 1525 - 1528