Adaptive meshing for nanophotonicsusing a posteriori error estimation

被引:0
|
作者
Svardsby, Albin J. [1 ]
Tassin, Philippe [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, SE-41296 Gothenburg, Sweden
来源
OPTICS EXPRESS | 2024年 / 32卷 / 14期
基金
瑞典研究理事会;
关键词
INVERSE DESIGN; ELEMENT;
D O I
10.1364/OE.523907
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As nanophotonic devices become increasingly complex, computer simulations of such devices are becoming ever more important. Unfortunately, computer simulations of nanophotonic devices are computationally expensive, especially if many simulations are necessary, e.g., when optimizing or inverse designing a device. Here we study adaptive mesh refinement for finite- element method simulations using an a posteriori error estimation method. We demonstrate that the use of adaptive meshing leads to faster convergence with lower memory footprint for complex three-dimensional nanophotonic structures. Nevertheless, one needs to be careful to avoid a mesh propagation effect for adaptive mesh refinement to be a successful strategy. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:24592 / 24602
页数:11
相关论文
共 50 条
  • [41] The adaptive computation of far-field patterns by a posteriori error estimation of linear functionals
    Monk, P
    Suli, E
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) : 251 - 274
  • [42] A COMPARISON OF ADAPTIVE STRATEGIES FOR MESH REFINEMENT BASED ON A POSTERIORI LOCAL ERROR ESTIMATION PROCEDURES
    FERNANDES, P
    GIRDINIO, P
    MOLFINO, P
    MOLINARI, G
    REPETTO, M
    IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) : 795 - 798
  • [43] A posteriori error estimation and adaptive finite element computation of the Helmholtz equation in exterior domains
    Stewart, JR
    Hughes, TJR
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1996, 22 (01) : 15 - 24
  • [44] EFFICIENT ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN APPROXIMATION USING IMPLICIT A POSTERIORI ERROR ESTIMATION
    Crowder, Adam J.
    Powell, Catherine E.
    Bespalov, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1681 - A1705
  • [45] A posteriori error estimation and adaptive mesh refinement in chemoplastic analyses of shotcrete tunnel linings
    Lackner, R
    Mang, HA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (4-6) : 363 - 372
  • [46] 'A posteriori' error indicator and error estimators for adaptive mesh refinement
    Chellamuthu, KC
    Ida, N
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1995, 14 (2-3) : 139 - 156
  • [47] A posteriori error learning in nonlinear adaptive filters
    Mandic, DP
    Chambers, JA
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1999, 146 (06): : 293 - 296
  • [48] An adaptive X-FEM for shape optimization using h-adaptive scheme and posteriori error estimation
    Yu, Yonggyun
    Huh, Jaesung
    Tezuka, Akira
    Kwak, Byung Man
    CJK-OSM 4: THE FOURTH CHINA-JAPAN-KOREA JOINT SYMPOSIUM ON OPTIMIZATION OF STRUCTURAL AND MECHANICAL SYSTEMS, 2006, : 107 - 112
  • [49] A posteriori error estimation for nonlinear variational problems
    Repin, SI
    Xanthis, LS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (10): : 1169 - 1174
  • [50] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88