Phase recovery from Fresnel incoherent correlation holography using differential Zernike fitting

被引:0
|
作者
Dave, Harshil [1 ]
Krupa, Sean [2 ]
Lebow, Paul [3 ]
机构
[1] Naval Res Lab, Opt Sci Div, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] Penn State Univ, Appl Res Lab, 222 Northpointe Blvd, Freeport, PA 16229 USA
[3] Alaire Technol Inc, 10815 Harley Rd, Lorton, VA 22079 USA
关键词
WAVE-FRONT RECONSTRUCTION;
D O I
10.1364/OL.531810
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fresnel incoherent correlation holography (FINCH) was created to improve imaging resolution and 3D imaging capabilities using spatially incoherent illumination. The optical setup of a FINCH-based interferometer is closely related to a radial shearing interferometer, which measures the radial phase difference of an input wavefront. By using phase retrieval methodologies from lateral shearing interferometry, namely, differential Zernike fitting (DZF), we show that FINCH-based and radial shearing interferometry can be used for phase retrieval and adaptive optics (AO). In this paper, we describe the phase retrieval algorithm using least squares-based DZF and demonstrate a simple adaptive optics loop with an aberrated point spread function using wave optics simulation. We find that FINCH-based phase retrieval has the advantages of fast phase retrieval measurements, thanks to well-studied least squares-based phase reconstruction methods, improved resolution compared to the Shack-Hartmann-based wavefront sensing, and the simplified optical setup of radial shearing interferometry. (C) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:5023 / 5026
页数:4
相关论文
共 50 条
  • [21] Single-shot Fresnel incoherent correlation holography microscopy with two-step phase-shifting
    Wu, Mengting
    Tang, Mingyu
    Zhang, Yu
    Du, Yanli
    Ma, Fengying
    Liang, Erjun
    Gong, Qiaoxia
    JOURNAL OF MODERN OPTICS, 2021, 68 (11) : 564 - 572
  • [22] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
    武梦婷
    张雨
    汤明玉
    段智勇
    马凤英
    杜艳丽
    梁二军
    弓巧侠
    Chinese Physics B, 2020, 29 (12) : 277 - 281
  • [23] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform*
    Wu, Meng-Ting
    Zhang, Yu
    Tang, Ming-Yu
    Duan, Zhi-Yong
    Ma, Feng-Ying
    Du, Yan-Li
    Liang, Er-Jun
    Gong, Qiao-Xia
    CHINESE PHYSICS B, 2020, 29 (12)
  • [24] Point spread function and two-point resolution in Fresnel incoherent correlation holography
    Bouchal, Petr
    Kapitan, Josef
    Chmelik, Radim
    Bouchal, Zdenek
    OPTICS EXPRESS, 2011, 19 (16): : 15603 - 15620
  • [25] Investigation of the effective aperture: towards high-resolution Fresnel incoherent correlation holography
    Ma, Fengying
    Li, Yu
    Wang, Xi
    Du, Yanli
    Gong, Qiaoxia
    Cheng, Jingkai
    Li Qin
    Su, Jianpo
    Hu, Yongsheng
    OPTICS EXPRESS, 2021, 29 (20): : 31549 - 31560
  • [26] Single-pixel Fresnel incoherent correlation holography for 3D imaging
    Li, Jiaosheng
    Liu, Tianyun
    Wu, Bo
    Chen, Yifei
    Zhang, Qinnan
    OPTICS AND LASER TECHNOLOGY, 2024, 174
  • [27] Fresnel incoherent correlation holography (FINCH): A different way of 3D imaging
    Rosen, Joseph
    Brooker, Gary
    LASER FOCUS WORLD, 2013, 49 (03): : 49 - 51
  • [28] Single-shot Fresnel incoherent correlation holography via deep learning based phase-shifting technology
    Huang, Tao
    Zhang, Qinnan
    Li, Jiaosheng
    Lu, Xiaoxu
    Di, Jianglei
    Zhong, Liyun
    Qin, Yuwen
    OPTICS EXPRESS, 2023, 31 (08) : 12349 - 12356
  • [29] Out-of-focus artifact removal for Fresnel incoherent correlation holography by deep learning
    Huang, Tao
    Li, Jiaosheng
    Zhang, Qinnan
    Zhang, Weina
    Di, Jianglei
    Wu, Difeng
    Lu, Xiaoxu
    Zhong, Liyun
    OPTICS AND LASERS IN ENGINEERING, 2024, 178
  • [30] Incoherent digital holography using geometric phase
    Choi, KiHong
    Min, Sung-Wook
    TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS, 2018, 10964