UAV-based in situ measurements of CO2 and CH4 fluxes over complex natural ecosystems

被引:1
|
作者
Bolek, Abdullah [1 ]
Heimann, Martin [1 ,2 ]
Goeckede, Mathias [1 ]
机构
[1] Max Planck Inst Biogeochem, Dept Biogeochem Signals, Jena, Germany
[2] Univ Helsinki, Inst Atmospher & Earth Syst Res, Helsinki, Finland
基金
欧洲研究理事会; 瑞典研究理事会;
关键词
SUB-ARCTIC MIRE; CARBON-DIOXIDE; METHANE EMISSIONS; WIND MEASUREMENTS; NET CARBON; EXCHANGE; QUANTIFICATION; GRADIENT; PEATLAND; AIRCORE;
D O I
10.5194/amt-17-5619-2024
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study presents an unoccupied aerial vehicle (UAV) platform used to resolve horizontal and vertical patterns of CO2 and CH4 mole fractions within the lower part of the atmospheric boundary layer. The obtained data contribute important information for upscaling fluxes from natural ecosystems over heterogeneous terrain and for constraining hot spots of greenhouse gas (GHG) emissions. This observational tool, therefore, has the potential to complement existing stationary carbon monitoring networks for GHGs, such as eddy covariance towers and manual flux chambers. The UAV platform is equipped with two gas analyzers for CO2 and CH4 that are connected sequentially. In addition, a 2D anemometer is deployed above the rotor plane to measure environmental parameters including 2D wind speed, air temperature, humidity, and pressure. Laboratory and field tests demonstrate that the platform is capable of providing data with reliable accuracy, with good agreement between the UAV data and tower-based measurements of CO2, H2O, and wind speed. Using interpolated maps of GHG mole fractions, with this tool we assessed the signal variability over a target area and identified potential hot spots. Our study shows that the UAV platform provides information about the spatial variability of the lowest part of the boundary layer, which to date remains poorly observed, especially in remote areas such as the Arctic. Furthermore, using the profile method, it is demonstrated that the GHG fluxes from a local sources can be calculated. Although subject to large uncertainties over the area of interest, the comparison between the eddy covariance method and UAV-based calculations showed acceptable qualitative agreement.
引用
收藏
页码:5619 / 5636
页数:18
相关论文
共 50 条
  • [41] Upscaling soil-atmosphere CO2 and CH4 fluxes across a topographically complex forested landscape
    Warner, Daniel L.
    Guevara, Mario
    Inamdar, Shreeram
    Vargas, Rodrigo
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 264 : 80 - 91
  • [42] CO2, CH4 and particles flux measurements in Florence, Italy
    Gioli, Beniamino
    Toscano, Piero
    Zaldei, Alessandro
    Fratini, Gerardo
    Miglietta, Franco
    EUROPEAN GEOSCIENCES UNION GENERAL ASSEMBLY 2013, EGUDIVISION ENERGY, RESOURCES & THE ENVIRONMENT, ERE, 2013, 40 : 537 - 544
  • [43] Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements
    Ryoo, Ju-Mee
    Iraci, Laura T.
    Tanaka, Tomoaki
    Marrero, Josette E.
    Yates, Emma L.
    Fung, Inez
    Michalak, Anna M.
    Tadic, Jovan
    Gore, Warren
    Bui, T. Paul
    Dean-Day, Jonathan M.
    Chang, Cecilia S.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (05) : 2949 - 2966
  • [44] Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale
    Du, Xidong
    Cheng, Yugang
    Liu, Zhenjian
    Hou, Zhenkun
    Wu, Tengfei
    Lei, Ruide
    Shu, Couxian
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) : 5165 - 5178
  • [45] CO2 reforming of CH4 over supported Ru catalysts
    Bradford, MCJ
    Vannice, MA
    JOURNAL OF CATALYSIS, 1999, 183 (01) : 69 - 75
  • [46] Catalytic reaction of CO2 with CH4 over nickel catalyst
    Li, WY
    Feng, J
    Xie, KC
    Guo, SC
    FUEL SCIENCE & TECHNOLOGY INTERNATIONAL, 1996, 14 (06): : 739 - 752
  • [47] CO2 reforming of CH4 over bimetallic supported catalysts
    Itkulova, SS
    Zhunusova, KZ
    Zakumbaeva, GD
    APPLIED ORGANOMETALLIC CHEMISTRY, 2000, 14 (12) : 850 - 852
  • [48] CO2 reforming of CH4 over supported Pt catalysts
    Bradford, MCJ
    Vannice, MA
    JOURNAL OF CATALYSIS, 1998, 173 (01) : 157 - 171
  • [49] Does genotypic diversity of Hydrocotyle vulgaris affect CO2 and CH4 fluxes?
    Zhu, Jia-Tao
    Xue, Wei
    Gao, Jun-Qin
    Li, Qian-Wei
    Yu, Wen-Han
    Yu, Fei-Hai
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [50] Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat
    Thomas, KL
    Benstead, J
    Davies, KL
    Lloyd, D
    SOIL BIOLOGY & BIOCHEMISTRY, 1996, 28 (01): : 17 - 23