Layer analysis based on RNA-seq data of TCGA reveals gastric cancer's molecular complexity

被引:0
|
作者
Wert, J. P. Perez [1 ]
Hernandez-Fernandez, S. [2 ]
Gamez, A. [2 ]
Arranz-Alvarez, M. [3 ]
Ghanem, I. [1 ]
Lopez-Vacas, R. [2 ]
Diaz-Almiron, M. [4 ]
Mendez, C. [5 ]
Fresno-Vara, J-A. [2 ]
Feliu, J. [1 ]
Custodio, A. [1 ]
Trilla, L. [2 ]
机构
[1] Hosp Univ La Paz, Dept Med Oncol, Madrid, Spain
[2] Hosp Univ La Paz, Inst Med & Mol Genet INGEMM, Mol Oncol & Pathol Lab, Madrid, Spain
[3] IdiPAZ Inst Invest Hosp Univ La Paz, IdiPAZ Biobank, Madrid, Spain
[4] IdiPAZ Inst Invest Hosp Univ La Paz, La Paz Univ Hosp IdiPAZ, Biostat Unit, Madrid, Spain
[5] Hosp Univ La Paz, Dept Pathol, Madrid, Spain
关键词
D O I
10.1016/j.annonc.2024.05.371
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
459P
引用
收藏
页码:S184 / S184
页数:1
相关论文
共 50 条
  • [41] Joint single cell DNA-seq and RNA-seq of gastric cancer cell lines reveals rules of in vitro evolution
    Andor, Noemi
    Lau, Billy T.
    Catalanotti, Claudia
    Sathe, Anuja
    Kubit, Matthew
    Chen, Jiamin
    Blaj, Cristina
    Cherry, Athena
    Bangs, Charles D.
    Grimes, Susan M.
    Suarez, Carlos J.
    Ji, Hanlee P.
    NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (02)
  • [42] Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data
    Ghosh, Debashis
    Qin, Zhaohui S.
    GENES, 2010, 1 (02) : 317 - 334
  • [43] A Combination of RNA-Seq Analysis and Use of TCGA Database for Determining the Molecular Mechanism and Identifying Potential Drugs for GJB1 in Ovarian Cancer
    Yang, Jie
    Fan, Yaqin
    Xie, Beibei
    Yang, Dan
    ONCOTARGETS AND THERAPY, 2021, 14 : 2623 - 2633
  • [44] RNA-seq based transcriptome profiling provides important insights into progression of gastric cancer
    Verma, R.
    ANNALS OF ONCOLOGY, 2019, 30 : 9 - 9
  • [45] RNA-SEQ ANALYSIS OF RECURRENT PAEDIATRIC EPENDYMOMAS REVEALS IMMUNOLOGICAL CHANGES SPECIFIC TO MOLECULAR SUBGROUPS
    Ritzmann, Timothy A.
    Rogers, Hazel A.
    Donson, Andrew M.
    Virasami, Alex
    Jacques, Thomas S.
    Paine, Simon M. L.
    Foreman, Nicholas
    Grundy, Richard G.
    NEURO-ONCOLOGY, 2018, 20 : 75 - 75
  • [46] Oqtans: a multifunctional workbench for RNA-seq data analysis
    Sreedharan, Vipin T.
    Schultheiss, Sebastian J.
    Jean, Geraldine
    Kahles, Andre
    Bohnert, Regina
    Drewe, Philipp
    Mudrakarta, Pramod
    Goernitz, Nico
    Zeller, Georg
    Raetsch, Gunnar
    BMC BIOINFORMATICS, 2014, 15
  • [47] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    BMC BIOINFORMATICS, 2013, 14 : 110
  • [48] Improving the Flexibility of RNA-Seq Data Analysis Pipelines
    Phan, John H.
    Wu, Po-Yen
    Wang, May D.
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 70 - 73
  • [49] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [50] PUseqClust: A Clustering Analysis Method for RNA-Seq Data
    Shi X.-F.
    Liu X.-J.
    Zhang L.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (09): : 2857 - 2868