Achieving Efficient Oxygen Evolution on High-Entropy Sulfide Utilizing Low Electronegativity of Al

被引:0
|
作者
Wan, Yi [1 ]
Wei, Wenrui [1 ]
Ding, Shengqi [1 ]
Wu, Liang [1 ]
Yuan, Xianxia [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
electronegativity; high-entropy sulfide; oxygen evolution reaction; redistribution of local electrons; NANOSHEETS; ALLOYS; PHASE; ORR;
D O I
10.1002/smll.202404689
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials. High-entropy sulfide of (FeCoNiCrCuAl)S@HCS with a 3D structure is synthesized, in which the lower electronegativity of Al makes it serve as electron donor and promotes the redistribution of local electrons from Co and Cr site toward adjacent Fe, Ni and Cu sites, eventually promoting oxygen evolution reaction kinetics. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction
    Zhao, Yao
    You, Junhua
    Wang, Zhaoyu
    Liu, Guangyi
    Huang, Xiaojuan
    Duan, Mingyi
    Zhang, Hangzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 599 - 605
  • [2] A porous high-entropy alloy for high-efficient oxygen evolution reaction
    Wang, Wei
    Lu, Yun-Zhuo
    Lu, Xing
    RARE METALS, 2023, 42 (07) : 2174 - 2181
  • [3] A porous high-entropy alloy for high-efficient oxygen evolution reaction
    Wei Wang
    Yun-Zhuo Lu
    Xing Lu
    Rare Metals, 2023, 42 : 2174 - 2181
  • [4] A porous high-entropy alloy for high-efficient oxygen evolution reaction
    Wei Wang
    Yun-Zhuo Lu
    Xing Lu
    RareMetals, 2023, 42 (07) : 2174 - 2181
  • [5] High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction
    Cui, Mingjin
    Yang, Chunpeng
    Li, Boyang
    Dong, Qi
    Wu, Meiling
    Hwang, Sooyeon
    Xie, Hua
    Wang, Xizheng
    Wang, Guofeng
    Hu, Liangbing
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)
  • [6] Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction
    Wei, Ruixue
    Fu, Gaoliang
    Qi, Huafeng
    Liu, Hewei
    RSC ADVANCES, 2024, 14 (26) : 18117 - 18125
  • [7] Macroporous high-entropy spinel oxide monoliths as efficient oxygen evolution electrocatalyst
    Ouyang, Xin
    Zhang, Zhizhen
    Qin, Tengteng
    Pei, Zhen
    Guo, Xingzhong
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024, 107 (12) : 8354 - 8366
  • [8] A Monolayer High-Entropy Layered Hydroxide Frame for Efficient Oxygen Evolution Reaction
    Ding, Yiran
    Wang, Zhouyang
    Liang, Zijia
    Sun, Xueping
    Sun, Zihang
    Zhao, Yuanxin
    Liu, Junlin
    Wang, Chenyang
    Zeng, Ziyue
    Fu, Lei
    Zeng, Mengqi
    Tang, Lin
    ADVANCED MATERIALS, 2023,
  • [9] A ZnFeNiCoCr high-entropy alloy for efficient bifunctional oxygen electrocatalysisA ZnFeNiCoCr high-entropy alloy for efficient bifunctional oxygen electrocatalysisJ. Li et al.
    Juan Li
    Bing Li
    Pei-Tong Li
    Ning Zhang
    Hui-Shan Shang
    Rare Metals, 2025, 44 (3) : 1789 - 1799
  • [10] A highly efficient high-entropy metal hydroxymethylate electrocatalyst for oxygen evolution reaction
    Jiang, Qi
    Lu, Ruihu
    Gu, Junfeng
    Zhang, Long
    Liu, Kailong
    Huang, Mengyan
    Liu, Peng
    Zuo, Shiyu
    Wang, Yilong
    Zhao, Yan
    Ma, Peiyan
    Fu, Zhengyi
    CHEMICAL ENGINEERING JOURNAL, 2023, 453