Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction

被引:5
|
作者
Wei, Ruixue [1 ]
Fu, Gaoliang [2 ]
Qi, Huafeng [2 ]
Liu, Hewei [2 ]
机构
[1] Zhengzhou Univ, Dept Cerebrovascular Dis, Affiliated Hosp 2, Zhengzhou 450052, Henan, Peoples R China
[2] Huanghe Sci & Technol Coll, Inst Nanostruct Funct Mat, Henan Prov Key Lab Nanocomposites & Applicat, Zhengzhou 450006, Henan, Peoples R China
关键词
Catalyst activity - Charge transfer - Electrocatalysts - Electrochemical impedance spectroscopy - Electrolysis - Electronic structure - Hydrogen production - Oxygen - Perovskite - X ray photoelectron spectroscopy;
D O I
10.1039/d4ra02680b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to their unique electronic structure, atomic arrangement and synergistic effect, high-entropy materials are being actively pursued as electrocatalysts for oxygen evolution reaction (OER) in water splitting. However, a relevant strategy to improve high-entropy materials is still lacking. Herein, substitutional doping on the La-site in high-entropy perovskite La1-xSrx(CrMnFeCoNi)0.2O3 is reported as an efficient OER catalyst. Sr doping is found to be crucial to enhancing the OER activity. The overpotential for the best catalyst La0.3Sr0.7(CrMnFeCoNi)0.2O3 is only 330 mV at 10 mA cm-2, achieving a reduction of 120 mV in overpotential compared to La(CrMnFeCoNi)0.2O3, which is attributed to the enhancement in intrinsic catalytic activity. Experimental evidences including in situ electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) indicate Sr doping induces the formation of high-valence Cr6+, Mn4+, Fe4+, Co4+ and Ni3+ species, which can accelerate the faster charge transfer at the interface, thereby increasing the intrinsic catalytic activity. The assembled two-electrode overall water splitting system operates stably at 10 mA cm-2 for 200 h without attenuation. This work offers an important method for developing a high-performance, high-entropy perovskite OER catalyst for hydrogen production by electrochemical water splitting. This work reports a high-entropy perovskite La0.3Sr0.7(CrMnFeCoNi)0.2O3 as a high-performance OER electrocatalyst. Sr doping induces the formation of higher-valence Cr6+, Mn4+, Fe4+, Co4+ and Ni3+ responsible for the excellent OER activity.
引用
收藏
页码:18117 / 18125
页数:9
相关论文
共 50 条
  • [1] Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction
    Chae, Sangwoo
    Shio, Akihito
    Kishida, Tomoya
    Furutono, Kosuke
    Kojima, Yumi
    Panomsuwan, Gasidit
    Ishizaki, Takahiro
    MATERIALS, 2024, 17 (12)
  • [2] High-entropy borides with frame structure: Efficient electrocatalysts for oxygen evolution reaction
    Gu, Tao
    Jing, Zhiyuan
    Miao, Fang
    Wu, Wei
    Zhao, Yuhong
    Hou, Hua
    Liang, Xiubing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1464 - 1474
  • [3] High-entropy FeCoNiCuAlV sulfide as an efficient and reliable electrocatalyst for oxygen evolution reaction
    Zhao, Yao
    You, Junhua
    Wang, Zhaoyu
    Liu, Guangyi
    Huang, Xiaojuan
    Duan, Mingyi
    Zhang, Hangzhou
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 70 : 599 - 605
  • [4] Amorphous high-entropy IrRuCrFeCoNiOx as efficient water splitting oxygen evolution reaction electrocatalysts
    Rong, Wan
    Chen, Yunfei
    Dang, Rui
    Huang, Kang
    Xia, Jiuyang
    Zhang, Bowei
    Liu, Jianfei
    Meng, Hanqi
    Cao, Qigao
    Wu, Junsheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [5] High-Entropy Selenides with Tunable Lattice Distortion as Efficient Electrocatalysts for Oxygen Evolution Reaction
    Li, Laiquan
    Li, Changfa
    Du, Jiale
    Huang, Qianwei
    Duan, Jingjing
    Liu, Jiawei
    Chen, Sheng
    CHEMSUSCHEM, 2025, 18 (05)
  • [6] Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction
    Wang, Qianqian
    Li, Jiaqi
    Li, Yongjie
    Shao, Genmiao
    Jia, Zhe
    Shen, Baolong
    NANO RESEARCH, 2022, 15 (10) : 8751 - 8759
  • [7] Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction
    Qianqian Wang
    Jiaqi Li
    Yongjie Li
    Genmiao Shao
    Zhe Jia
    Baolong Shen
    Nano Research, 2022, 15 : 8751 - 8759
  • [8] Design of high-entropy antiperovskite metal nitrides as highly efficient electrocatalysts for oxygen evolution reaction
    Zhu, Lili
    Li, Changdian
    Zheng, Ruobing
    Cheng, Wangping
    He, Yuandi
    Gong, Chengzhuan
    Liu, Miao
    Huang, Yanan
    Zhu, Xuebin
    Sun, Yuping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 51 : 638 - 647
  • [9] High-Entropy Oxides as Electrocatalysts for the Oxygen Evolution Reaction: A Mini Review
    Huang, Yueqi
    Wang, Dan
    Yu, Yihang
    Li, Zenghui
    Wen, Xiaojing
    Wang, Zhiyuan
    ENERGY & FUELS, 2024, 38 (15) : 13661 - 13684
  • [10] Tuning oxygen vacancies on LaFeO3 perovskite as efficient electrocatalysts for oxygen evolution reaction
    Peng, Xiangfeng
    Zheng, Jingxuan
    Zhang, Yi
    Wang, Zhao
    MATERIALS LETTERS, 2022, 309