WEDDERBURN RANK REDUCTION AND KRYLOV SUBSPACE METHOD FOR TENSOR APPROXIMATION. PART 1: TUCKER CASE

被引:13
|
作者
Goreinov, S. A. [1 ]
Oseledets, I. V. [1 ]
Savostyanov, D. V. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2012年 / 34卷 / 01期
关键词
multidimensional arrays; sparse tensors; structured tensors; Tucker approximation; Krylov subspace methods; Wedderburn rank reduction; fast compression; CROSS APPROXIMATION; DIMENSIONALITY;
D O I
10.1137/100792056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New algorithms are proposed for the Tucker approximation of a 3-tensor accessed only through a tensor-by-vector-by-vector multiplication subroutine. In the matrix case, the Krylov methods are methods of choice to approximate the dominant column and row subspaces of a sparse or structured matrix given through a matrix-by-vector operation. Using the Wedderburn rank reduction formula, we propose a matrix approximation algorithm that computes the Krylov subspaces and can be generalized to 3-tensors. The numerical experiments show that on quantum chemistry data the proposed tensor methods outperform the minimal Krylov recursion of Savas and Elden.
引用
收藏
页码:A1 / A27
页数:27
相关论文
共 8 条
  • [1] FROM LOW-RANK APPROXIMATION TO A RATIONAL KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION
    Kolesnikov, D. A.
    Oseledets, I. V.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1622 - 1637
  • [2] Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side
    A. H. Bentbib
    S. El-Halouy
    El M. Sadek
    Numerical Algorithms, 2020, 84 : 1411 - 1430
  • [3] Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side
    Bentbib, A. H.
    El-Halouy, S.
    Sadek, El M.
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1411 - 1430
  • [4] Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 1 Low-Rank Tensor Decompositions
    Cichocki, Andrzej
    Lee, Namgil
    Oseledets, Ivan
    Anh-Huy Phan
    Zhao, Qibin
    Mandic, Danilo P.
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2016, 9 (4-5): : I - +
  • [5] Rational Krylov Subspace Method (RKSM) for Solving the Lyapunov Equations of Index-1 Descriptor Systems and Application to Balancing Based Model Reduction
    Uddin, M. Monir
    Hossain, M. Sumon
    Uddin, Mohammad Forhad
    2016 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2016, : 451 - 454
  • [6] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Lars Eldén
    Maryam Dehghan
    Numerical Algorithms, 2022, 91 : 1315 - 1347
  • [7] A Krylov-Schur-like method for computing the best rank-(r1,r2,r3) approximation of large and sparse tensors
    Elden, Lars
    Dehghan, Maryam
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1315 - 1347
  • [8] A NEWTON-GRASSMANN METHOD FOR COMPUTING THE BEST MULTILINEAR RANK-(r1, r2, r3) APPROXIMATION OF A TENSOR
    Elden, Lars
    Savas, Berkant
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) : 248 - 271