Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side

被引:13
|
作者
Bentbib, A. H. [1 ]
El-Halouy, S. [1 ]
Sadek, El M. [2 ]
机构
[1] Univ Cadi Ayyad, Lab LAMAI, Marrakech, Morocco
[2] Univ Chouaib Doukkali, ENSA, Lab LabSIPE, El Jadida, Morocco
关键词
Sylvester tensor equation; CP decomposition; Krylov subspace; Block and global Arnoldi; LINEAR-SYSTEMS; ALGORITHMS;
D O I
10.1007/s11075-020-00874-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the effectiveness of Krylov projection methods and the CP decomposition of tensors, which is a low rank decomposition, we propose Arnoldi-based methods (block and global) to solve Sylvester tensor equation with low rank right-hand sides. We apply a standard Krylov subspace method to each coefficient matrix, in order to reduce the main problem to a projected Sylvester tensor equation, which can be solved by a global iterative scheme. We show how to extract approximate solutions via matrix Krylov subspaces basis. Several theoretical results such as expressions of residual and its norm are presented. To show the performance of the proposed approaches, some numerical experiments are given.
引用
收藏
页码:1411 / 1430
页数:20
相关论文
共 50 条
  • [1] Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side
    A. H. Bentbib
    S. El-Halouy
    El M. Sadek
    Numerical Algorithms, 2020, 84 : 1411 - 1430
  • [2] Projection schemes based on Hessenberg process for Sylvester tensor equation with low-rank right-hand side
    Cheraghzadeh, T.
    Ghaziani, R. Khoshsiar
    Toutounian, F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (07):
  • [3] Projection schemes based on Hessenberg process for Sylvester tensor equation with low-rank right-hand side
    T. Cheraghzadeh
    R. Khoshsiar Ghaziani
    F. Toutounian
    Computational and Applied Mathematics, 2022, 41
  • [4] PROJECTION PROCESS WITH DEFINABLE RIGHT-HAND SIDE
    Bivas, Mira
    Ribarska, Nadezhda
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (05) : 2819 - 2834
  • [5] On the determination of the right-hand side in a parabolic equation
    Ashyralyev, A.
    Erdogan, A. S.
    Demirdag, O.
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (11) : 1672 - 1683
  • [6] Reconstruction of the right-hand side of a parabolic equation
    M. M. Lavrent’ev
    V. I. Maksimov
    Computational Mathematics and Mathematical Physics, 2008, 48 : 641 - 647
  • [7] Reconstruction of the Right-Hand Side of a Parabolic Equation
    Lavrent'ev, M. M.
    Maksimov, V. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (04) : 641 - 647
  • [8] BLOCK KRYLOV SUBSPACE RECYCLING FOR SHIFTED SYSTEMS WITH UNRELATED RIGHT-HAND SIDES
    Soodhalter, Kirk M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A302 - A324
  • [9] Matrix Krylov subspace methods for linear systems with multiple right-hand sides
    M. Heyouni
    A. Essai
    Numerical Algorithms, 2005, 40 : 137 - 156
  • [10] Matrix Krylov subspace methods for linear systems with multiple right-hand sides
    Heyouni, M
    Essai, A
    NUMERICAL ALGORITHMS, 2005, 40 (02) : 137 - 156