Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study

被引:0
|
作者
Yang, Yaning [1 ]
Cui, Jiawen [1 ]
Luo, Zhihua [1 ]
Luo, Zhixin [1 ]
Sun, Yanhui [1 ,2 ]
机构
[1] Dalian Minzu Univ, Coll Informat & Commun Engn, Dalian 116600, Peoples R China
[2] Dalian Univ Technol, Sch Mech Engn, Dalian 116024, Peoples R China
关键词
NO2 gas sensor; ZnO; In2O3; heterojunctions; DFT; TOTAL-ENERGY CALCULATIONS; ZNO; SENSOR; NANOFIBERS; PERFORMANCE; IN2O3;
D O I
10.3390/s24165311
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, alkali metal Rb-loaded ZnO/In2O3 heterojunctions were synthesized using a combination of hydrothermal and impregnation methods. The morphology and structure of the synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The enhancement mechanism of the nitrogen dioxide gas sensing performance of the Rb-loaded ZnO/In2O3 heterojunctions was systematically investigated at room temperature using density-functional theory calculations and experimental validation. The experimental tests showed that the Rb-loaded ZnO/In2O3 sensor achieved an excellent response value of 24.2 for 1 ppm NO2, with response and recovery times of 55 and 21 s, respectively. This result is 20 times higher than that of pure ZnO sensors and two times higher than that of ZnO/In2O3 sensors, indicating that the Rb-loaded ZnO/In2O3 sensor has a more pronounced enhancement in performance for NO2. This study not only revealed the mechanism by which Rb loading affects the electronic structure and gas molecule adsorption behavior on the surface of ZnO/In2O3 heterojunctions but also provides theoretical guidance and technical support for the development of high-performance room-temperature NO2 sensors.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Gas Sensing Properties of MWCNT/ZnO MWCNT/ZnO/In2O3 Nanostructures
    Bolotov, V. V.
    Stenkin, Yu A.
    Sokolov, D., V
    Roslikov, V. E.
    Knyazev, E., V
    Ivlev, K. E.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS. MATERIALS WITH MULTILEVEL HIERARCHICAL STRUCTURE AND INTELLIGENT MANUFACTURING TECHNOLOGY, 2020, 2310
  • [22] In2O3 microtubes decorated with Ag nanoparticles for NO2 gas detection at room temperature
    Liu, Yanna
    Li, Sheng
    Xiao, Song
    Du, Ke
    VACUUM, 2022, 202
  • [23] UV-enhanced NO2 gas sensing properties of polystyrene sulfonate functionalized ZnO nanowires at room temperature
    Wang, Jing
    Yu, Mingying
    Li, Xian
    Xia, Yi
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (01) : 176 - 183
  • [24] Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature
    Liang, Xiao
    Zhang, Jing
    Du, Liyong
    Zhang, Mingzhe
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 329
  • [25] Solution combustion synthesis and enhanced gas sensing properties of porous In2O3/ZnO heterostructures
    Zou, Xinwei
    Yan, Xiaoyan
    Li, Guomin
    Tian, Yuming
    Zhang, Mingang
    Liang, Liping
    RSC ADVANCES, 2017, 7 (55): : 34482 - 34487
  • [26] CsPbBr3 quantum dots enhanced ZnO sensing to NO2 at room temperature
    Yueyue, Li
    Siqi, Sun
    Yilin, Wang
    Fengmin, Liu
    Hongtao, Wang
    Jihao, Bai
    Min, Lu
    Geyu, Lu
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 368
  • [27] Ultrasensitive room temperature chemiresistive NO2 gas sensing down to ppb levels using In2O3/rGO heterostructures
    Cao, Peijiang
    Xu, Xinhu
    Jia, Fang
    Zeng, Yuxiang
    Liu, Wenjun
    Wang, Chunfeng
    Han, Shun
    Fang, Ming
    Liu, Xinke
    Zhu, Deliang
    Navale, Sachin T.
    APPLIED SURFACE SCIENCE, 2025, 688
  • [28] Electrospinning preparation and room temperature gas sensing properties of porous In2O3 nanotubes and nanowires
    Xu, Lin
    Dong, Biao
    Wang, Yu
    Bai, Xue
    Liu, Qiong
    Song, Hongwei
    SENSORS AND ACTUATORS B-CHEMICAL, 2010, 147 (02): : 531 - 538
  • [29] In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature
    Liu, Miao
    Wang, Zeyu
    Song, Peng
    Yang, Zhongxi
    Wang, Qi
    CERAMICS INTERNATIONAL, 2021, 47 (16) : 23028 - 23037
  • [30] Al doped narcissus-like ZnO for enhanced NO2 sensing performance: An experimental and DFT investigation
    Zhang, Yong-Hui
    Li, Yu-Liang
    Gong, Fei-Long
    Xie, Ke-Fei
    Liu, Min
    Zhang, Hao-Li
    Fang, Shao-Ming
    SENSORS AND ACTUATORS B-CHEMICAL, 2020, 305