Lumbar intervertebral disc detection and classification with novel deep learning models

被引:2
|
作者
Tan, Der Sheng [1 ]
Nisar, Humaira [1 ]
Yeap, Kim Ho [1 ]
Dakulagi, Veerendra [2 ]
Amin, Muhammad [3 ]
机构
[1] Univ Tunku Abdul Rahman, Dept Elect Engn, Kampar 31900, Malaysia
[2] Guru Nanak Dev Engn Coll, Dept Elect & Commun Engn, Bidar 585403, Karnataka, India
[3] Childrens Hosp & Inst Child Hlth, Multan, India
关键词
Segmentation; Classification; Feature extraction; Lumbar disc; MR images; Novel CNN; ResNet-50; YOLOv2; AlexNet;
D O I
10.1016/j.jksuci.2024.102148
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Low back pain (LBP) is a prevalent spinal issue, affecting eight out of ten individuals. Notably, lumbar intervertebral disc (IVD) abnormalities frequently contribute to LBP. To diagnose LBP, Magnetic Resonance Imaging (MRI) is crucial for obtaining detailed spinal images. This paper employs deep learning (DL) to detect and locate lumbar IVD in sagittal MR images. It further classifies lumbar IVDs as healthy or herniated, utilizing both novel convolutional neural network (CNN) and conventional CNN models. The dataset utilized comprises MR images from 32 patients, with 10 exhibiting healthy discs and the remaining 22 posing a mix of healthy and herniated discs, totaling 160 lumbar discs, incorporating 112 healthy and 48 herniated discs. In this study, ResNet-50 architecture in the Novel Lumbar IVD detection (NLID) model served as the feature extractor to segment the five lumbar IVDs from MR images. The features extracted from ResNet-50 were input into YOLOv2 for the identification of the region of interest (ROI). The findings indicate that optimal performance was achieved at the 22nd Rectified Linear Unit (ReLU) activation layer, boasting a remarkable 99.59% average precision, 97.22% F1score, 94.59% precision, and a perfect 100% recall. This commendable performance consistently held above the 85% threshold until the 22nd ReLU activation layer. Regarding imbalanced dataset classification, AlexNet emerged as the frontrunner among other pre-trained networks, boasting the highest test accuracy of 90.63%, and an impressive F1 score of 88.77%. Meanwhile, the Novel Lumbar IVD Classification (NLIC) model achieved superior results with 93.75% test accuracy, and 92.27% F1-score. In the setting of the balanced dataset, NLIC achieved 96.88% test accuracy, and 96.46% F1-score with fewer epochs compared to AlexNet, affirming the robustness of the novel trained-from-scratch network. These findings distinctly underscore the effectiveness of CNNs in both medical image segmentation and classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [32] Posterior protrusion of the lumbar intervertebral disc
    Barr, JS
    Mixter, WJ
    JOURNAL OF BONE AND JOINT SURGERY, 1941, 23 : 444 - 456
  • [33] LUMBAR INTERVERTEBRAL DISC DISEASE IN AFRICANS
    LEVY, LF
    JOURNAL OF NEUROSURGERY, 1967, 26 (1P1) : 31 - +
  • [34] Lumbar intervertebral disc injuries in athletes
    Fritz, JM
    ATHLETIC THERAPY TODAY, 1999, 4 (02): : 27 - 31
  • [35] The nerve supply of the lumbar intervertebral disc
    Edgar, M. A.
    JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 2007, 89B (09): : 1135 - 1139
  • [36] Deep Learning Assisted Classification of T1ρ-MR Based Intervertebral Disc Degeneration Phases
    Li, Yanrun
    Hu, Meiyu
    Chen, Junhong
    Ling, Zemin
    Zou, Xuenong
    Cao, Wuteng
    Wei, Fuxin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (03) : 1492 - 1500
  • [37] Accurate Intervertebral Disc Segmentation Approach Based on Deep Learning
    Cheng, Yu-Kai
    Lin, Chih-Lung
    Huang, Yi-Chi
    Lin, Guo-Shiang
    Lian, Zhen-You
    Chuang, Cheng-Hung
    DIAGNOSTICS, 2024, 14 (02)
  • [38] Classification of Intervertebral Disc Disease
    Fenn, Joe
    Olby, Natasha J.
    FRONTIERS IN VETERINARY SCIENCE, 2020, 7
  • [39] Using Shape-Aware Models for Lumbar Spine Intervertebral Disc Segmentation
    Haq, Rabia
    Besachio, David A.
    Borgie, Roderick C.
    Audette, Michel A.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3191 - 3196
  • [40] Lumbar Disc Herniation Automatic Detection in Magnetic Resonance Imaging Based on Deep Learning
    Tsai, Jen-Yung
    Hung, Isabella Yu-Ju
    Guo, Yue Leon
    Jan, Yih-Kuen
    Lin, Chih-Yang
    Shih, Tiffany Ting-Fang
    Chen, Bang-Bin
    Lung, Chi-Wen
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9